Kim Sunghan, Noor Fouzia, Aboy Mateo, McNames James
Biomedical Instrumentation & Data Analysis Laboratory, East Carolina University, Greenville, NC, USA.
Electrical Engineering Department, Oregon Institute of Technology, Portland, OR, USA.
Biomed Eng Online. 2016 Aug 11;15(1):94. doi: 10.1186/s12938-016-0214-x.
We describe the first automatic algorithm designed to estimate the pulse pressure variation ([Formula: see text]) from arterial blood pressure (ABP) signals under spontaneous breathing conditions. While currently there are a few publicly available algorithms to automatically estimate [Formula: see text] accurately and reliably in mechanically ventilated subjects, at the moment there is no automatic algorithm for estimating [Formula: see text] on spontaneously breathing subjects. The algorithm utilizes our recently developed sequential Monte Carlo method (SMCM), which is called a maximum a-posteriori adaptive marginalized particle filter (MAM-PF). We report the performance assessment results of the proposed algorithm on real ABP signals from spontaneously breathing subjects.
Our assessment results indicate good agreement between the automatically estimated [Formula: see text] and the gold standard [Formula: see text] obtained with manual annotations. All of the automatically estimated [Formula: see text] index measurements ([Formula: see text]) were in agreement with manual gold standard measurements ([Formula: see text]) within ±4 % accuracy.
The proposed automatic algorithm is able to give reliable estimations of [Formula: see text] given ABP signals alone during spontaneous breathing.
我们描述了首个旨在在自主呼吸条件下根据动脉血压(ABP)信号估计脉压变异([公式:见原文])的自动算法。虽然目前有一些公开可用的算法可在机械通气受试者中准确可靠地自动估计[公式:见原文],但目前尚无用于在自主呼吸受试者中估计[公式:见原文]的自动算法。该算法利用了我们最近开发的序贯蒙特卡罗方法(SMCM),即最大后验自适应边缘化粒子滤波器(MAM-PF)。我们报告了该算法对来自自主呼吸受试者的真实ABP信号的性能评估结果。
我们的评估结果表明,自动估计的[公式:见原文]与通过人工标注获得的金标准[公式:见原文]之间具有良好的一致性。所有自动估计的[公式:见原文]指数测量值([公式:见原文])与人工金标准测量值([公式:见原文])在±4%的精度范围内一致。
所提出的自动算法能够在自主呼吸期间仅根据ABP信号可靠地估计[公式:见原文]。