Dumond Rémy, Gastinger Steven, Rahman Hala Abdul, Le Faucheur Alexis, Quinton Patrice, Kang Haitao, Prioux Jacques
Laboratoire Mouvement, Sport, Santé (EA 1274), Université de Rennes 2, Avenue Robert Schuman, 35170, Bruz, France.
Département Sciences du sport et éducation physique, Ecole normale supérieure de Rennes, Campus de Ker Lann, Avenue Robert Schuman, 35170, Bruz, France.
Eur J Appl Physiol. 2017 Aug;117(8):1533-1555. doi: 10.1007/s00421-017-3630-0. Epub 2017 Jun 13.
The purposes of this study were to both improve the accuracy of respiratory volume (V) estimates using the respiratory magnetometer plethysmography (RMP) technique and facilitate the use of this technique.
We compared two models of machine learning (ML) for estimating [Formula: see text]: a linear model (multiple linear regression-MLR) and a nonlinear model (artificial neural network-ANN), and we used cross-validation to validate these models. Fourteen healthy adults, aged [Formula: see text] years participated in the present study. The protocol was conducted in a laboratory test room. The anteroposterior displacements of the rib cage and abdomen, and the axial displacements of the chest wall and spine were measured using two pairs of magnetometers. [Formula: see text] was estimated from these four signals, and the respiratory volume was simultaneously measured using a spirometer ([Formula: see text]) under lying, sitting and standing conditions as well as various exercise conditions (working on computer, treadmill walking at 4 and 6 km[Formula: see text], treadmill running at 9 and 12 km [Formula: see text] and ergometer cycling at 90 and 110 W).
The results from the ANN model fitted the spirometer volume significantly better than those obtained through MLR. Considering all activities, the difference between [Formula: see text] and [Formula: see text] (bias) was higher for the MLR model ([Formula: see text] L) than for the ANN model ([Formula: see text] L).
Our results demonstrate that this new processing approach for RMP seems to be a valid tool for estimating V with sufficient accuracy during lying, sitting and standing and under various exercise conditions.
本研究的目的是提高使用呼吸磁力计体积描记法(RMP)技术估算呼吸量(V)的准确性,并促进该技术的应用。
我们比较了两种用于估算[公式:见原文]的机器学习(ML)模型:线性模型(多元线性回归-MLR)和非线性模型(人工神经网络-ANN),并使用交叉验证来验证这些模型。14名年龄在[公式:见原文]岁的健康成年人参与了本研究。实验方案在实验室测试室进行。使用两对磁力计测量胸廓和腹部的前后位移以及胸壁和脊柱的轴向位移。从这四个信号中估算出[公式:见原文],并在仰卧、坐姿和站立状态以及各种运动条件下(在电脑上工作、以4和6千米[公式:见原文]的速度在跑步机上行走、以9和12千米[公式:见原文]的速度在跑步机上跑步以及以90和110瓦的功率在测力计上骑行)使用肺活量计([公式:见原文])同时测量呼吸量。
ANN模型的结果与肺活量计测量的体积拟合得明显优于通过MLR获得的结果。考虑所有活动,MLR模型的[公式:见原文]与[公式:见原文]之间的差异(偏差)([公式:见原文]升)高于ANN模型([公式:见原文]升)。
我们的结果表明,这种用于RMP的新处理方法似乎是一种在仰卧、坐姿和站立状态以及各种运动条件下以足够精度估算V的有效工具。