Suppr超能文献

通过气相色谱-燃烧-同位素比率质谱联用仪、气相色谱-质谱联用仪和氢核磁共振对咖啡豆进行分类。

Classification of Coffee Beans by GC-C-IRMS, GC-MS, and (1)H-NMR.

作者信息

Arana Victoria Andrea, Medina Jessica, Esseiva Pierre, Pazos Diego, Wist Julien

机构信息

Grupo de Investigación Ciencias, Educación y Tecnología (CETIC), Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, km 7 Antigua Vía Puerto Colombia, Barranquilla, Atlántico, Colombia.

Chemistry Department, Universidad del Valle, A.A. 25360, Cali, Colombia.

出版信息

J Anal Methods Chem. 2016;2016:8564584. doi: 10.1155/2016/8564584. Epub 2016 Jul 18.

Abstract

In a previous work using (1)H-NMR we reported encouraging steps towards the construction of a robust expert system for the discrimination of coffees from Colombia versus nearby countries (Brazil and Peru), to assist the recent protected geographical indication granted to Colombian coffee in 2007. This system relies on fingerprints acquired on a 400 MHz magnet and is thus well suited for small scale random screening of samples obtained at resellers or coffee shops. However, this approach cannot easily be implemented at harbour's installations, due to the elevated operational costs of cryogenic magnets. This limitation implies shipping the samples to the NMR laboratory, making the overall approach slower and thereby more expensive and less attractive for large scale screening at harbours. In this work, we report on our attempt to obtain comparable classification results using alternative techniques that have been reported promising as an alternative to NMR: GC-MS and GC-C-IRMS. Although statistically significant information could be obtained by all three methods, the results show that the quality of the classifiers depends mainly on the number of variables included in the analysis; hence NMR provides an advantage since more molecules are detected to obtain a model with better predictions.

摘要

在之前一项使用氢核磁共振(¹H-NMR)的研究中,我们报告了在构建一个强大的专家系统方面取得的令人鼓舞的进展,该系统用于区分来自哥伦比亚与周边国家(巴西和秘鲁)的咖啡,以辅助2007年授予哥伦比亚咖啡的最新地理标志保护。该系统依赖于在400兆赫磁体上获取的指纹图谱,因此非常适合对从经销商或咖啡店获取的样品进行小规模随机筛选。然而,由于低温磁体的运营成本较高,这种方法在港口设施中不易实施。这一限制意味着要将样品运送到核磁共振实验室,使得整个方法速度较慢,从而对于在港口进行大规模筛选而言成本更高且吸引力更低。在这项研究中,我们报告了我们尝试使用已被报道有望替代核磁共振的其他技术(气相色谱-质谱联用(GC-MS)和气相色谱-燃烧-同位素比率质谱联用(GC-C-IRMS))来获得可比分类结果的情况。尽管所有这三种方法都能获得具有统计学意义的信息,但结果表明分类器的质量主要取决于分析中所包含变量的数量;因此,核磁共振具有优势,因为检测到更多分子以获得具有更好预测能力的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aff/4967985/7bee350c6f87/JAMC2016-8564584.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验