Department of Marketing, College of Business, Florida State University, Tallahassee, FL, 32306-1110, USA.
Department of Psychological Sciences, University of Missouri-Columbia, Columbia, MO, USA, 65211.
Psychometrika. 2011 Oct;76(4):612-33. doi: 10.1007/s11336-011-9221-9. Epub 2011 Jul 14.
Two-mode binary data matrices arise in a variety of social network contexts, such as the attendance or non-attendance of individuals at events, the participation or lack of participation of groups in projects, and the votes of judges on cases. A popular method for analyzing such data is two-mode blockmodeling based on structural equivalence, where the goal is to identify partitions for the row and column objects such that the clusters of the row and column objects form blocks that are either complete (all 1s) or null (all 0s) to the greatest extent possible. Multiple restarts of an object relocation heuristic that seeks to minimize the number of inconsistencies (i.e., 1s in null blocks and 0s in complete blocks) with ideal block structure is the predominant approach for tackling this problem. As an alternative, we propose a fast and effective implementation of tabu search. Computational comparisons across a set of 48 large network matrices revealed that the new tabu-search heuristic always provided objective function values that were better than those of the relocation heuristic when the two methods were constrained to the same amount of computation time.
二模二元数据矩阵在各种社交网络情境中出现,例如个人是否参加活动、群体是否参与项目以及法官对案件的投票。一种流行的分析此类数据的方法是基于结构等价的二模块模型化,其目标是为行和列对象识别分区,以便行和列对象的聚类形成块,这些块尽可能最大程度地是完整的(全部为 1)或空的(全部为 0)。多次重新启动对象重新定位启发式算法,以最小化与理想块结构的不一致性(即空块中的 1 和完整块中的 0)的数量,是解决此问题的主要方法。作为替代方案,我们提出了一种快速有效的禁忌搜索实现。在一组 48 个大型网络矩阵上的计算比较表明,当两种方法都受到相同计算时间的限制时,新的禁忌搜索启发式算法始终提供比重新定位启发式算法更好的目标函数值。