Suppr超能文献

混合成员随机块模型

Mixed Membership Stochastic Blockmodels.

作者信息

Airoldi Edoardo M, Blei David M, Fienberg Stephen E, Xing Eric P

机构信息

Princeton University (

出版信息

J Mach Learn Res. 2008 Sep;9:1981-2014.

Abstract

Observations consisting of measurements on relationships for pairs of objects arise in many settings, such as protein interaction and gene regulatory networks, collections of author-recipient email, and social networks. Analyzing such data with probabilisic models can be delicate because the simple exchangeability assumptions underlying many boilerplate models no longer hold. In this paper, we describe a latent variable model of such data called the mixed membership stochastic blockmodel. This model extends blockmodels for relational data to ones which capture mixed membership latent relational structure, thus providing an object-specific low-dimensional representation. We develop a general variational inference algorithm for fast approximate posterior inference. We explore applications to social and protein interaction networks.

摘要

由对成对对象之间关系的测量组成的观测结果出现在许多场景中,例如蛋白质相互作用和基因调控网络、作者-收件人电子邮件集合以及社交网络。使用概率模型分析此类数据可能会很棘手,因为许多样板模型所基于的简单可交换性假设不再成立。在本文中,我们描述了一种此类数据的潜变量模型,称为混合成员随机块模型。该模型将关系数据的块模型扩展为能够捕获混合成员潜关系结构的模型,从而提供特定对象的低维表示。我们开发了一种通用的变分推理算法,用于快速近似后验推理。我们探索了该模型在社交网络和蛋白质相互作用网络中的应用。

相似文献

4
Dynamic Infinite Mixed-Membership Stochastic Blockmodel.动态无限混合成员随机块模型。
IEEE Trans Neural Netw Learn Syst. 2015 Sep;26(9):2072-85. doi: 10.1109/TNNLS.2014.2369374. Epub 2014 Nov 24.
6
Stochastic blockmodels with a growing number of classes.具有不断增加类别的随机块模型。
Biometrika. 2012 Jun;99(2):273-284. doi: 10.1093/biomet/asr053. Epub 2012 Apr 17.
8
Entropy of stochastic blockmodel ensembles.随机块模型集合的熵
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056122. doi: 10.1103/PhysRevE.85.056122. Epub 2012 May 30.

引用本文的文献

3
Estimating Higher-Order Mixed Memberships via the Tensor Perturbation Bound.通过张量扰动界估计高阶混合成员关系
J Am Stat Assoc. 2025;120:1214-1224. doi: 10.1080/01621459.2024.2404265. Epub 2024 Nov 20.
7
Optimal variable clustering for high-dimensional matrix valued data.高维矩阵值数据的最优变量聚类
Inf inference. 2025 Mar 12;14(1):iaaf001. doi: 10.1093/imaiai/iaaf001. eCollection 2025 Mar.
9
Detecting the functional interaction structure of software development teams.检测软件开发团队的功能交互结构。
PLoS One. 2024 Oct 24;19(10):e0306923. doi: 10.1371/journal.pone.0306923. eCollection 2024.
10
Statistical clustering of documents via stochastic blockmodels.通过随机块模型对文档进行统计聚类。
J Appl Stat. 2023 Sep 1;51(10):1878-1893. doi: 10.1080/02664763.2023.2247617. eCollection 2024.

本文引用的文献

3
Finding scientific topics.寻找科学主题。
Proc Natl Acad Sci U S A. 2004 Apr 6;101 Suppl 1(Suppl 1):5228-35. doi: 10.1073/pnas.0307752101. Epub 2004 Feb 10.
4
MIPS: analysis and annotation of proteins from whole genomes.MIPS:全基因组蛋白质的分析与注释
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D41-4. doi: 10.1093/nar/gkh092.
7
Association mapping in structured populations.结构化群体中的关联作图。
Am J Hum Genet. 2000 Jul;67(1):170-81. doi: 10.1086/302959. Epub 2000 May 26.
9
Bayesian information criterion for censored survival models.删失生存模型的贝叶斯信息准则。
Biometrics. 2000 Mar;56(1):256-62. doi: 10.1111/j.0006-341x.2000.00256.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验