Airoldi Edoardo M, Blei David M, Fienberg Stephen E, Xing Eric P
Princeton University (
J Mach Learn Res. 2008 Sep;9:1981-2014.
Observations consisting of measurements on relationships for pairs of objects arise in many settings, such as protein interaction and gene regulatory networks, collections of author-recipient email, and social networks. Analyzing such data with probabilisic models can be delicate because the simple exchangeability assumptions underlying many boilerplate models no longer hold. In this paper, we describe a latent variable model of such data called the mixed membership stochastic blockmodel. This model extends blockmodels for relational data to ones which capture mixed membership latent relational structure, thus providing an object-specific low-dimensional representation. We develop a general variational inference algorithm for fast approximate posterior inference. We explore applications to social and protein interaction networks.
由对成对对象之间关系的测量组成的观测结果出现在许多场景中,例如蛋白质相互作用和基因调控网络、作者-收件人电子邮件集合以及社交网络。使用概率模型分析此类数据可能会很棘手,因为许多样板模型所基于的简单可交换性假设不再成立。在本文中,我们描述了一种此类数据的潜变量模型,称为混合成员随机块模型。该模型将关系数据的块模型扩展为能够捕获混合成员潜关系结构的模型,从而提供特定对象的低维表示。我们开发了一种通用的变分推理算法,用于快速近似后验推理。我们探索了该模型在社交网络和蛋白质相互作用网络中的应用。