Suppr超能文献

蛋白质折叠与去折叠转变的协同性如何?

How cooperative are protein folding and unfolding transitions?

作者信息

Malhotra Pooja, Udgaonkar Jayant B

机构信息

National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.

出版信息

Protein Sci. 2016 Nov;25(11):1924-1941. doi: 10.1002/pro.3015. Epub 2016 Sep 13.

Abstract

A thermodynamically and kinetically simple picture of protein folding envisages only two states, native (N) and unfolded (U), separated by a single activation free energy barrier, and interconverting by cooperative two-state transitions. The folding/unfolding transitions of many proteins occur, however, in multiple discrete steps associated with the formation of intermediates, which is indicative of reduced cooperativity. Furthermore, much advancement in experimental and computational approaches has demonstrated entirely non-cooperative (gradual) transitions via a continuum of states and a multitude of small energetic barriers between the N and U states of some proteins. These findings have been instrumental towards providing a structural rationale for cooperative versus noncooperative transitions, based on the coupling between interaction networks in proteins. The cooperativity inherent in a folding/unfolding reaction appears to be context dependent, and can be tuned via experimental conditions which change the stabilities of N and U. The evolution of cooperativity in protein folding transitions is linked closely to the evolution of function as well as the aggregation propensity of the protein. A large activation energy barrier in a fully cooperative transition can provide the kinetic control required to prevent the accumulation of partially unfolded forms, which may promote aggregation. Nevertheless, increasing evidence for barrier-less "downhill" folding, as well as for continuous "uphill" unfolding transitions, indicate that gradual non-cooperative processes may be ubiquitous features on the free energy landscape of protein folding.

摘要

蛋白质折叠在热力学和动力学上的一个简单图景设想只有两种状态,即天然态(N)和未折叠态(U),由单一的活化自由能垒分隔,并通过协同的两态转变相互转化。然而,许多蛋白质的折叠/去折叠转变是在与中间体形成相关的多个离散步骤中发生的,这表明协同性降低。此外,实验和计算方法的许多进展表明,一些蛋白质在N态和U态之间通过连续的状态和众多小的能量障碍进行完全非协同(渐进)转变。基于蛋白质中相互作用网络之间的耦合,这些发现有助于为协同转变与非协同转变提供结构上的理论依据。折叠/去折叠反应中固有的协同性似乎取决于具体情况,并且可以通过改变N态和U态稳定性的实验条件进行调节。蛋白质折叠转变中协同性的演变与功能的演变以及蛋白质的聚集倾向密切相关。完全协同转变中的大活化能垒可以提供防止部分未折叠形式积累所需的动力学控制,而部分未折叠形式可能会促进聚集。然而,越来越多关于无垒“下坡”折叠以及连续“上坡”去折叠转变的证据表明,渐进的非协同过程可能是蛋白质折叠自由能景观中普遍存在的特征。

相似文献

1
How cooperative are protein folding and unfolding transitions?
Protein Sci. 2016 Nov;25(11):1924-1941. doi: 10.1002/pro.3015. Epub 2016 Sep 13.
2
Tuning Cooperativity on the Free Energy Landscape of Protein Folding.
Biochemistry. 2015 Jun 9;54(22):3431-41. doi: 10.1021/acs.biochem.5b00247. Epub 2015 May 28.
5
Folding of horse cytochrome c in the reduced state.
J Mol Biol. 2001 Oct 5;312(5):1135-60. doi: 10.1006/jmbi.2001.4993.
6
Thermodynamics of downhill folding: multi-probe analysis of PDD, a protein that folds over a marginal free energy barrier.
J Phys Chem B. 2014 Jul 31;118(30):8982-94. doi: 10.1021/jp504261g. Epub 2014 Jul 21.
8
Observation of noncooperative folding thermodynamics in simulations of 1BBL.
Biophys J. 2008 Jun;94(12):4837-46. doi: 10.1529/biophysj.107.123265. Epub 2008 Mar 7.
9
Energy barriers, cooperativity, and hidden intermediates in the folding of small proteins.
Biochem Biophys Res Commun. 2006 Feb 17;340(3):976-83. doi: 10.1016/j.bbrc.2005.12.093. Epub 2005 Dec 27.

引用本文的文献

2
Spectroscopic analysis of the bacterially expressed head domain of rotavirus VP6.
Biosci Rep. 2024 May 29;44(5). doi: 10.1042/BSR20232178.
3
Protein G-quadruplex interactions and their effects on phase transitions and protein aggregation.
Nucleic Acids Res. 2024 May 8;52(8):4702-4722. doi: 10.1093/nar/gkae229.
4
production of a multi-disulfide bonded SARS-CoV-2 Omicron BA.5 RBD exhibiting native-like biochemical and biophysical properties.
Biophys Physicobiol. 2023 Sep 21;20(4):e200036. doi: 10.2142/biophysico.bppb-v20.0036. eCollection 2023.
6
Variation of CI-2 Conformers upon Addition of Methanol to Water: An IMS-MS-Based Thermodynamic Analysis.
J Phys Chem A. 2023 Nov 16;127(45):9399-9408. doi: 10.1021/acs.jpca.3c03651. Epub 2023 Nov 7.
7
The temperature-dependence of host-guest binding thermodynamics: experimental and simulation studies.
Chem Sci. 2023 Oct 13;14(42):11818-11829. doi: 10.1039/d3sc01975f. eCollection 2023 Nov 1.
8
Protein G-quadruplex interactions and their effects on phase transitions and protein aggregation.
bioRxiv. 2024 Mar 20:2023.09.21.558871. doi: 10.1101/2023.09.21.558871.

本文引用的文献

2
Protein Folding-How and Why: By Hydrogen Exchange, Fragment Separation, and Mass Spectrometry.
Annu Rev Biophys. 2016 Jul 5;45:135-52. doi: 10.1146/annurev-biophys-062215-011121. Epub 2016 Apr 27.
3
Direct observation of transition paths during the folding of proteins and nucleic acids.
Science. 2016 Apr 8;352(6282):239-42. doi: 10.1126/science.aad0637.
4
Secondary Structural Change Can Occur Diffusely and Not Modularly during Protein Folding and Unfolding Reactions.
J Am Chem Soc. 2016 May 11;138(18):5866-78. doi: 10.1021/jacs.6b03356. Epub 2016 Apr 29.
5
Cytochrome c folds through foldon-dependent native-like intermediates in an ordered pathway.
Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):3809-14. doi: 10.1073/pnas.1522674113. Epub 2016 Mar 10.
6
Limited cooperativity in protein folding.
Curr Opin Struct Biol. 2016 Feb;36:58-66. doi: 10.1016/j.sbi.2015.12.001. Epub 2016 Feb 2.
7
Using the folding landscapes of proteins to understand protein function.
Curr Opin Struct Biol. 2016 Feb;36:67-74. doi: 10.1016/j.sbi.2016.01.001. Epub 2016 Jan 24.
8
Evidence for Dry Molten Globule-Like Domains in the pH-Induced Equilibrium Folding Intermediate of a Multidomain Protein.
J Phys Chem Lett. 2016 Jan 7;7(1):173-9. doi: 10.1021/acs.jpclett.5b02545. Epub 2015 Dec 28.
9
Mapping the Topography of a Protein Energy Landscape.
J Am Chem Soc. 2015 Nov 25;137(46):14610-25. doi: 10.1021/jacs.5b07370. Epub 2015 Nov 12.
10
Structural origin of slow diffusion in protein folding.
Science. 2015 Sep 25;349(6255):1504-10. doi: 10.1126/science.aab1369.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验