Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane QLD 4072, Australia.
Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi-110012, India.
Sci Rep. 2016 Aug 17;6:31721. doi: 10.1038/srep31721.
The C4 photosynthetic pathway evolved to allow efficient CO2 capture by plants where effective carbon supply may be limiting as in hot or dry environments, explaining the high growth rates of C4 plants such as maize. Important crops such as wheat and rice are C3 plants resulting in efforts to engineer them to use the C4 pathway. Here we show the presence of a C4 photosynthetic pathway in the developing wheat grain that is absent in the leaves. Genes specific for C4 photosynthesis were identified in the wheat genome and found to be preferentially expressed in the photosynthetic pericarp tissue (cross- and tube-cell layers) of the wheat caryopsis. The chloroplasts exhibit dimorphism that corresponds to chloroplasts of mesophyll- and bundle sheath-cells in leaves of classical C4 plants. Breeding to optimize the relative contributions of C3 and C4 photosynthesis may adapt wheat to climate change, contributing to wheat food security.
C4 光合作用途径的进化使植物能够有效地捕获 CO2,而在炎热或干燥的环境中,有效的碳供应可能会受到限制,这解释了玉米等 C4 植物的高生长速度。小麦和水稻等重要作物是 C3 植物,因此人们努力对其进行工程改造,使其利用 C4 途径。在这里,我们发现在发育中的小麦籽粒中存在 C4 光合作用途径,而在叶片中则不存在。在小麦基因组中鉴定出了 C4 光合作用特有的基因,并发现它们在小麦颖果的光合作用果皮组织(横细胞层和管细胞层)中优先表达。叶绿体表现出与经典 C4 植物叶片中叶肉细胞和束鞘细胞的叶绿体相对应的二态性。通过培育来优化 C3 和 C4 光合作用的相对贡献,可能会使小麦适应气候变化,有助于小麦的粮食安全。