Suppr超能文献

辅助基因调节因子1位点对艰难梭菌的毒力和致病性至关重要。

Accessory Gene Regulator-1 Locus Is Essential for Virulence and Pathogenesis of Clostridium difficile.

作者信息

Darkoh Charles, Odo Chioma, DuPont Herbert L

机构信息

Department of Epidemiology, Human Genetics, and Environmental Sciences, Center For Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, Texas, USA Microbiology and Molecular Genetics Program, University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA

Department of Epidemiology, Human Genetics, and Environmental Sciences, Center For Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, Texas, USA.

出版信息

mBio. 2016 Aug 16;7(4):e01237-16. doi: 10.1128/mBio.01237-16.

Abstract

UNLABELLED

Clostridium difficile infection (CDI) is responsible for most of the definable cases of antibiotic- and hospital-associated diarrhea worldwide and is a frequent cause of morbidity and mortality in older patients. C. difficile, a multidrug-resistant anaerobic pathogen, causes disease by producing toxins A and B, which are controlled by an accessory gene regulator (Agr) quorum signaling system. Some C. difficile strains encode two Agr loci in their genomes, designated agr1 and agr2 The agr1 locus is present in all of the C. difficile strains sequenced to date, whereas the agr2 locus is present in a few strains. The functional roles of agr1 and agr2 in C. difficile toxin regulation and pathogenesis were unknown until now. Using allelic exchange, we deleted components of both agr loci and examined the mutants for toxin production and virulence. The results showed that the agr1 mutant cannot produce toxins A and B; toxin production can be restored by complementation with wild-type agr1 Furthermore, the agr1 mutant is able to colonize but unable to cause disease in a murine CDI model. These findings have profound implications for CDI treatment because we have uncovered a promising therapeutic target for the development of nonantibiotic drugs to treat this life-threatening emerging pathogen by targeting the toxins directly responsible for disease.

IMPORTANCE

Within the last decade, the number of cases of C. difficile infections has been increasing exponentially in the United States, resulting in about 4.8 billion U.S. dollars in health care costs annually. As a multidrug-resistant, spore-forming, anaerobic pathogen, C. difficile overpopulates the colon after the gut microbiota has been altered by antibiotic therapy. With increasing resistance to antibiotic treatment of C. difficile infections, patients are experiencing higher costs of health care and a lower quality of life as treatment options decrease. During infection, C. difficile produces toxins A and B, which directly cause disease. As a result, the toxins have become promising nonantibiotic treatment targets. Here, we have identified a pathway responsible for activating the production of the toxins. This important finding opens up a unique therapeutic target for the development of a novel nonantibiotic therapy for C. difficile infections.

摘要

未标记

艰难梭菌感染(CDI)是全球大多数可明确诊断的抗生素相关性和医院相关性腹泻病例的病因,也是老年患者发病和死亡的常见原因。艰难梭菌是一种多重耐药厌氧病原体,通过产生毒素A和B致病,这两种毒素受辅助基因调节因子(Agr)群体感应信号系统控制。一些艰难梭菌菌株在其基因组中编码两个Agr位点,分别命名为agr1和agr2。agr1位点存在于迄今为止测序的所有艰难梭菌菌株中,而agr2位点仅存在于少数菌株中。直到现在,agr1和agr2在艰难梭菌毒素调节和发病机制中的功能作用仍不清楚。我们利用等位基因交换技术删除了两个agr位点的组成部分,并检测了突变体的毒素产生和毒力。结果表明,agr1突变体不能产生毒素A和B;用野生型agr1进行互补可恢复毒素产生。此外,agr1突变体能够在小鼠CDI模型中定殖,但不能致病。这些发现对CDI治疗具有深远意义,因为我们发现了一个有前景的治疗靶点,可通过直接靶向导致疾病的毒素来开发治疗这种危及生命的新出现病原体的非抗生素药物。

重要性

在过去十年中,美国艰难梭菌感染病例数呈指数级增长,每年造成约48亿美元的医疗保健费用。作为一种多重耐药、形成孢子的厌氧病原体,在肠道微生物群因抗生素治疗而改变后,艰难梭菌在结肠中过度繁殖。随着对艰难梭菌感染抗生素治疗耐药性的增加,患者的医疗保健成本更高,且随着治疗选择减少,生活质量降低。在感染期间,艰难梭菌产生毒素A和B,直接导致疾病。因此,这些毒素已成为有前景的非抗生素治疗靶点。在此,我们确定了一条负责激活毒素产生的途径。这一重要发现为开发针对艰难梭菌感染的新型非抗生素疗法开辟了一个独特的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c88f/4992976/3c6f43cd239d/mbo0041629400001.jpg

相似文献

2
Toxin synthesis by Clostridium difficile is regulated through quorum signaling.
mBio. 2015 Feb 24;6(2):e02569. doi: 10.1128/mBio.02569-14.
3
Pathogenicity Locus, Core Genome, and Accessory Gene Contributions to Virulence.
mBio. 2017 Aug 8;8(4):e00885-17. doi: 10.1128/mBio.00885-17.
5
Nonantimicrobial drug targets for Clostridium difficile infections.
Future Microbiol. 2017 Sep;12(11):975-985. doi: 10.2217/fmb-2017-0024. Epub 2017 Jul 31.
8
Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen.
Gut Microbes. 2014;5(5):579-93. doi: 10.4161/19490976.2014.969632.
10
Inhibitory Effect of Epigallocatechin Gallate on the Virulence of Clostridium difficile PCR Ribotype 027.
J Food Sci. 2015 Dec;80(12):M2925-31. doi: 10.1111/1750-3841.13145. Epub 2015 Nov 10.

引用本文的文献

1
In-depth characterization of accessory gene regulator loci and associated virulence factors in isolates.
Curr Res Microb Sci. 2025 Jul 1;9:100435. doi: 10.1016/j.crmicr.2025.100435. eCollection 2025.
2
Understanding Quorum-Sensing and Biofilm Forming in Anaerobic Bacterial Communities.
Int J Mol Sci. 2024 Nov 28;25(23):12808. doi: 10.3390/ijms252312808.
3
Regulatory networks: Linking toxin production and sporulation in Clostridioides difficile.
Anaerobe. 2025 Feb;91:102920. doi: 10.1016/j.anaerobe.2024.102920. Epub 2024 Nov 7.
4
Gut Microbiota and New Microbiome-Targeted Drugs for Infections.
Antibiotics (Basel). 2024 Oct 20;13(10):995. doi: 10.3390/antibiotics13100995.
5
Fight or flee, a vital choice for .
mLife. 2024 Feb 9;3(1):14-20. doi: 10.1002/mlf2.12102. eCollection 2024 Mar.
6
Environmental and Nutritional Parameters Modulating Genetic Expression for Virulence Factors of .
Antibiotics (Basel). 2024 Apr 16;13(4):365. doi: 10.3390/antibiotics13040365.
8
Biofilm Formation of , Toxin Production and Alternatives to Conventional Antibiotics in the Treatment of CDI.
Microorganisms. 2023 Aug 26;11(9):2161. doi: 10.3390/microorganisms11092161.
9
Expanding our grasp of two-component signaling in .
J Bacteriol. 2023 Oct 26;205(10):e0018823. doi: 10.1128/jb.00188-23. Epub 2023 Sep 20.

本文引用的文献

1
Fecal Microbial Transplants Reduce Antibiotic-resistant Genes in Patients With Recurrent Clostridium difficile Infection.
Clin Infect Dis. 2016 Jun 15;62(12):1479-1486. doi: 10.1093/cid/ciw185. Epub 2016 Mar 29.
3
Toxin synthesis by Clostridium difficile is regulated through quorum signaling.
mBio. 2015 Feb 24;6(2):e02569. doi: 10.1128/mBio.02569-14.
4
Bile salt inhibition of host cell damage by Clostridium difficile toxins.
PLoS One. 2013 Nov 11;8(11):e79631. doi: 10.1371/journal.pone.0079631. eCollection 2013.
5
Fulminant Clostridium difficile colitis: a complication of perioperative antibiotic prophylaxis.
J Oral Maxillofac Surg. 2013 Nov;71(11):1880-5. doi: 10.1016/j.joms.2013.04.035. Epub 2013 Jul 17.
6
Fecal transplantation for recurrent Clostridium difficile infection in older adults: a review.
J Am Geriatr Soc. 2013 Aug;61(8):1394-8. doi: 10.1111/jgs.12378. Epub 2013 Jul 19.
7
The agr locus regulates virulence and colonization genes in Clostridium difficile 027.
J Bacteriol. 2013 Aug;195(16):3672-81. doi: 10.1128/JB.00473-13. Epub 2013 Jun 14.
8
Improved bacterial mutagenesis by high-frequency allele exchange, demonstrated in Clostridium difficile and Streptococcus suis.
Appl Environ Microbiol. 2013 Aug;79(15):4768-71. doi: 10.1128/AEM.01195-13. Epub 2013 May 31.
9
Bacterial quorum sensing: its role in virulence and possibilities for its control.
Cold Spring Harb Perspect Med. 2012 Nov 1;2(11):a012427. doi: 10.1101/cshperspect.a012427.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验