Suppr超能文献

利用体内磁共振弹性成像技术评估心肌梗死诱导猪模型中的左心室僵硬度。

In vivo magnetic resonance elastography to estimate left ventricular stiffness in a myocardial infarction induced porcine model.

作者信息

Mazumder Ria, Schroeder Samuel, Mo Xiaokui, Litsky Alan S, Clymer Bradley D, White Richard D, Kolipaka Arunark

机构信息

Department of Electrical and Computer Engineering, 205 Dreese Laboratories, Ohio State University, Columbus, Ohio, USA.

Department of Radiology, Ohio State University, Columbus, Ohio, USA.

出版信息

J Magn Reson Imaging. 2017 Apr;45(4):1024-1033. doi: 10.1002/jmri.25432. Epub 2016 Aug 17.

Abstract

PURPOSE

To estimate change in left ventricular (LV) end-systolic and end-diastolic myocardial stiffness (MS) in pigs induced with myocardial infarction (MI) with disease progression using cardiac magnetic resonance elastography (MRE) and to compare it against ex vivo mechanical testing, LV circumferential strain, and magnetic resonance imaging (MRI) relaxometry parameters (T , T , and extracellular volume fraction [ECV]).

MATERIALS AND METHODS

MRI (1.5T) was performed on seven pigs, before surgery (Bx), and 10 (D10), and 21 (D21) days after creating MI. Cardiac MRE-derived MS was measured in infarcted region (MIR) and remote region (RR), and validated against mechanical testing-derived MS obtained postsacrifice on D21. Circumferential strain and MRI relaxometry parameters (T , T , and ECV) were also obtained. Multiparametric analysis was performed to determine correlation between cardiac MRE-derived MS and 1) strain, 2) relaxometry parameters, and 3) mechanical testing.

RESULTS

Mean diastolic (D10: 5.09 ± 0.6 kPa; D21: 5.45 ± 0.7 kPa) and systolic (D10: 5.72 ± 0.8 kPa; D21: 6.34 ± 1.0 kPa) MS in MIR were significantly higher (P < 0.01) compared to mean diastolic (D10: 3.97 ± 0.4 kPa; D21: 4.12 ± 0.2 kPa) and systolic (D10: 5.08 ± 0.6 kPa; and D21: 5.16 ± 0.6 kPa) MS in RR. The increase in cardiac MRE-derived MS at D21 (MIR) was consistent and correlated strongly with mechanical testing-derived MS (r(diastolic) = 0.86; r(systolic) = 0.89). Diastolic MS in MIR demonstrated a negative correlation with strain (r = 0.58). Additionally, cardiac MRE-derived MS demonstrated good correlations with post-contrast T (r(diastolic) = -0.549; r(systolic) = -0.741) and ECV (r(diastolic) = 0.548; r(systolic) = 0.703), and no correlation with T .

CONCLUSION

As MI progressed, cardiac MRE-derived MS increased in MIR compared to RR, which significantly correlated with mechanical testing-derived MS, T and ECV.

LEVEL OF EVIDENCE

1 J. Magn. Reson. Imaging 2017;45:1024-1033.

摘要

目的

使用心脏磁共振弹性成像(MRE)评估猪心肌梗死(MI)疾病进展过程中左心室(LV)收缩末期和舒张末期心肌僵硬度(MS)的变化,并将其与离体力学测试、LV圆周应变和磁共振成像(MRI)弛豫测量参数(T1、T2和细胞外容积分数[ECV])进行比较。

材料与方法

对7头猪在手术前(Bx)、MI创建后10天(D10)和21天(D21)进行MRI(1.5T)检查。在梗死区域(MIR)和远隔区域(RR)测量心脏MRE衍生的MS,并与D21处牺牲后获得的力学测试衍生的MS进行验证。还获得了圆周应变和MRI弛豫测量参数(T1、T2和ECV)。进行多参数分析以确定心脏MRE衍生的MS与1)应变、2)弛豫测量参数和3)力学测试之间的相关性。

结果

与RR中的平均舒张期(D10:3.97±0.4kPa;D21:4.12±0.2kPa)和收缩期(D10:5.08±0.6kPa;D21:5.16±0.6kPa)MS相比,MIR中的平均舒张期(D10:5.09±0.6kPa;D21:5.45±0.7kPa)和收缩期(D10:5.72±0.8kPa;D21:6.34±1.0kPa)MS显著更高(P<0.01)。D21时(MIR)心脏MRE衍生的MS增加是一致的,并且与力学测试衍生的MS密切相关(r(舒张期)=0.86;r(收缩期)=0.89)。MIR中的舒张期MS与应变呈负相关(r=0.58)。此外,心脏MRE衍生的MS与对比剂后T1(r(舒张期)=-0.549;r(收缩期)=-0.741)和ECV(r(舒张期)=0.548;r(收缩期)=0.703)具有良好的相关性,与T2无相关性。

结论

随着MI进展,与RR相比,MIR中心脏MRE衍生的MS增加,这与力学测试衍生的MS、T1和ECV显著相关。

证据水平

1 J.Magn.Reson.Imaging 2017;45:1024 - 1033。

相似文献

1
In vivo magnetic resonance elastography to estimate left ventricular stiffness in a myocardial infarction induced porcine model.
J Magn Reson Imaging. 2017 Apr;45(4):1024-1033. doi: 10.1002/jmri.25432. Epub 2016 Aug 17.
2
In vivo quantification of myocardial stiffness in hypertensive porcine hearts using MR elastography.
J Magn Reson Imaging. 2017 Mar;45(3):813-820. doi: 10.1002/jmri.25423. Epub 2016 Aug 26.
4
Sex Differences in Aging-related Myocardial Stiffening Quantitatively Measured with MR Elastography.
Radiol Cardiothorac Imaging. 2024 Jun;6(3):e230140. doi: 10.1148/ryct.230140.

引用本文的文献

1
The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction.
Commun Biol. 2022 Sep 27;5(1):1022. doi: 10.1038/s42003-022-03980-y.
2
Passive myocardial mechanical properties: meaning, measurement, models.
Biophys Rev. 2021 Oct 13;13(5):587-610. doi: 10.1007/s12551-021-00838-1. eCollection 2021 Oct.
4
Evaluating Novel Targets of Ischemia Reperfusion Injury in Pig Models.
Int J Mol Sci. 2019 Sep 25;20(19):4749. doi: 10.3390/ijms20194749.
5
Non-invasive Measurement of Dynamic Myocardial Stiffness Using Acoustic Radiation Force Impulse Imaging.
Ultrasound Med Biol. 2019 May;45(5):1112-1130. doi: 10.1016/j.ultrasmedbio.2018.12.011. Epub 2019 Mar 16.
6
Mix and (mis-)match - The mechanosensing machinery in the changing environment of the developing, healthy adult and diseased heart.
Biochim Biophys Acta Mol Cell Res. 2020 Mar;1867(3):118436. doi: 10.1016/j.bbamcr.2019.01.017. Epub 2019 Feb 8.
7
Advances and Future Direction of Magnetic Resonance Elastography.
Top Magn Reson Imaging. 2018 Oct;27(5):363-384. doi: 10.1097/RMR.0000000000000179.
8
Biomechanical assessment of myocardial infarction using optical coherence elastography.
Biomed Opt Express. 2018 Jan 23;9(2):728-742. doi: 10.1364/BOE.9.000728. eCollection 2018 Feb 1.
9
Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method.
Int J Numer Method Biomed Eng. 2018 Jun;34(6):e2979. doi: 10.1002/cnm.2979. Epub 2018 Apr 23.
10
Cardiovascular magnetic resonance elastography: A review.
NMR Biomed. 2018 Oct;31(10):e3853. doi: 10.1002/nbm.3853. Epub 2017 Nov 29.

本文引用的文献

3
Measuring age-dependent myocardial stiffness across the cardiac cycle using MR elastography: A reproducibility study.
Magn Reson Med. 2016 Apr;75(4):1586-93. doi: 10.1002/mrm.25760. Epub 2015 May 22.
4
Shear-wave amplitudes measured with cardiac MR elastography for diagnosis of diastolic dysfunction.
Radiology. 2014 Jun;271(3):681-7. doi: 10.1148/radiol.13131605. Epub 2014 Jan 19.
5
Quantitative T2 mapping for detecting myocardial edema after reperfusion of myocardial infarction: validation and comparison with T2-weighted images.
Int J Cardiovasc Imaging. 2013 Jun;29 Suppl 1:65-72. doi: 10.1007/s10554-013-0256-0. Epub 2013 Jun 14.
6
Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience.
J Cardiovasc Magn Reson. 2012 Sep 11;14(1):64. doi: 10.1186/1532-429X-14-64.
7
Magnetic resonance elastography as a method to estimate myocardial contractility.
J Magn Reson Imaging. 2012 Jul;36(1):120-7. doi: 10.1002/jmri.23616. Epub 2012 Feb 14.
8
Vibration-synchronized magnetic resonance imaging for the detection of myocardial elasticity changes.
Magn Reson Med. 2012 Apr;67(4):919-24. doi: 10.1002/mrm.24185. Epub 2012 Jan 31.
9
Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology.
Eur Heart J. 2012 May;33(10):1268-78. doi: 10.1093/eurheartj/ehr481. Epub 2012 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验