Mounce Bryan C, Cesaro Teresa, Moratorio Gonzalo, Hooikaas Peter Jan, Yakovleva Anna, Werneke Scott W, Smith Everett Clinton, Poirier Enzo Z, Simon-Loriere Etienne, Prot Matthieu, Tamietti Carole, Vitry Sandrine, Volle Romain, Khou Cécile, Frenkiel Marie-Pascale, Sakuntabhai Anavaj, Delpeyroux Francis, Pardigon Nathalie, Flamand Marie, Barba-Spaeth Giovanna, Lafon Monique, Denison Mark R, Albert Matthew L, Vignuzzi Marco
Viral Populations and Pathogenesis Unit, Institut Pasteur, Paris, France.
Laboratory of Dendritic Cell Biology, Institut Pasteur, Paris, France Institut National de la Santé et de la Recherche Médicale, U818, Paris, France.
J Virol. 2016 Oct 14;90(21):9683-9692. doi: 10.1128/JVI.01347-16. Print 2016 Nov 1.
RNA viruses present an extraordinary threat to human health, given their sudden and unpredictable appearance, the potential for rapid spread among the human population, and their ability to evolve resistance to antiviral therapies. The recent emergence of chikungunya virus, Zika virus, and Ebola virus highlights the struggles to contain outbreaks. A significant hurdle is the availability of antivirals to treat the infected or protect at-risk populations. While several compounds show promise in vitro and in vivo, these outbreaks underscore the need to accelerate drug discovery. The replication of several viruses has been described to rely on host polyamines, small and abundant positively charged molecules found in the cell. Here, we describe the antiviral effects of two molecules that alter polyamine levels: difluoromethylornithine (DFMO; also called eflornithine), which is a suicide inhibitor of ornithine decarboxylase 1 (ODC1), and diethylnorspermine (DENSpm), an activator of spermidine/spermine N-acetyltransferase (SAT1). We show that reducing polyamine levels has a negative effect on diverse RNA viruses, including several viruses involved in recent outbreaks, in vitro and in vivo These findings highlight the importance of the polyamine biosynthetic pathway to viral replication, as well as its potential as a target in the development of further antivirals or currently available molecules, such as DFMO.
RNA viruses present a significant hazard to human health, and combatting these viruses requires the exploration of new avenues for targeting viral replication. Polyamines, small positively charged molecules within the cell, have been demonstrated to facilitate infection for a few different viruses. Our study demonstrates that diverse RNA viruses rely on the polyamine pathway for replication and highlights polyamine biosynthesis as a promising drug target.
RNA病毒对人类健康构成了极大威胁,因其突然且不可预测地出现、在人群中迅速传播的潜力以及对抗病毒疗法产生耐药性的能力。最近基孔肯雅病毒、寨卡病毒和埃博拉病毒的出现凸显了控制疫情的艰难。一个重大障碍是缺乏用于治疗感染者或保护高危人群的抗病毒药物。虽然有几种化合物在体外和体内显示出前景,但这些疫情凸显了加速药物研发的必要性。已有描述表明,几种病毒的复制依赖于宿主多胺,多胺是细胞内存在的小而丰富的带正电荷分子。在此,我们描述了两种改变多胺水平的分子的抗病毒作用:二氟甲基鸟氨酸(DFMO;也称为依氟鸟氨酸),它是鸟氨酸脱羧酶1(ODC1)的自杀性抑制剂,以及二乙基亚精胺(DENSpm),一种亚精胺/精胺N - 乙酰转移酶(SAT1)的激活剂。我们表明,降低多胺水平在体外和体内对多种RNA病毒,包括几种与近期疫情相关的病毒,有负面影响。这些发现凸显了多胺生物合成途径对病毒复制的重要性,以及其作为进一步抗病毒药物或现有分子(如DFMO)开发靶点的潜力。
RNA病毒对人类健康构成重大危害,对抗这些病毒需要探索针对病毒复制的新途径。多胺是细胞内带正电荷的小分子,已被证明可促进几种不同病毒的感染。我们的研究表明,多种RNA病毒依赖多胺途径进行复制,并凸显了多胺生物合成作为一个有前景的药物靶点。