Suppr超能文献

一种用于变阶分数阶波动方程的时空谱配置算法。

A space-time spectral collocation algorithm for the variable order fractional wave equation.

作者信息

Bhrawy A H, Doha E H, Alzaidy J F, Abdelkawy M A

机构信息

Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.

Department of Mathematics, Faculty of Science, Cairo University, Giza, 12613 Egypt.

出版信息

Springerplus. 2016 Aug 2;5(1):1220. doi: 10.1186/s40064-016-2899-5. eCollection 2016.

Abstract

The variable order wave equation plays a major role in acoustics, electromagnetics, and fluid dynamics. In this paper, we consider the space-time variable order fractional wave equation with variable coefficients. We propose an effective numerical method for solving the aforementioned problem in a bounded domain. The shifted Jacobi polynomials are used as basis functions, and the variable-order fractional derivative is described in the Caputo sense. The proposed method is a combination of shifted Jacobi-Gauss-Lobatto collocation scheme for the spatial discretization and the shifted Jacobi-Gauss-Radau collocation scheme for temporal discretization. The aforementioned problem is then reduced to a problem consists of a system of easily solvable algebraic equations. Finally, numerical examples are presented to show the effectiveness of the proposed numerical method.

摘要

变阶波动方程在声学、电磁学和流体动力学中起着重要作用。在本文中,我们考虑具有变系数的时空变阶分数阶波动方程。我们提出了一种在有界域中求解上述问题的有效数值方法。移位雅可比多项式用作基函数,变阶分数阶导数采用卡普托意义下的描述。所提出的方法是用于空间离散化的移位雅可比 - 高斯 - 洛巴托配置方案和用于时间离散化的移位雅可比 - 高斯 - 拉道配置方案的组合。上述问题随后被简化为一个由易于求解的代数方程组组成的问题。最后,给出数值例子以展示所提出数值方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54ce/4969255/b49b1a278545/40064_2016_2899_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验