Suppr超能文献

基于谱方法求解一类时空分数阶偏微分方程的稳定数值结果

Stable numerical results to a class of time-space fractional partial differential equations via spectral method.

作者信息

Shah Kamal, Jarad Fahd, Abdeljawad Thabet

机构信息

Department of Mathematics, University of Malakand, Chakdara Dir (lower), Khyber Pakhtunkhawa, Pakistan.

Çankaya University, Department of Mathematics, 06790 Etimesgut, Ankara, Turkey.

出版信息

J Adv Res. 2020 Jun 19;25:39-48. doi: 10.1016/j.jare.2020.05.022. eCollection 2020 Sep.

Abstract

In this paper, we are concerned with finding numerical solutions to the class of time-space fractional partial differential equations: under the initial conditions. and the mixed boundary conditions. where is the arbitrary derivative in Caputo sense of order corresponding to the variable time . Further, is the arbitrary derivative in Caputo sense with order corresponding to the variable space . Using shifted Jacobin polynomial basis and via some operational matrices of fractional order integration and differentiation, the considered problem is reduced to solve a system of linear equations. The used method doesn't need discretization. A test problem is presented in order to validate the method. Moreover, it is shown by some numerical tests that the suggested method is stable with respect to a small perturbation of the source data . Further the exact and numerical solutions are compared via 3D graphs which shows that both the solutions coincides very well.

摘要

在本文中,我们关注于寻找时空分数阶偏微分方程类的数值解:在初始条件下,以及混合边界条件下,其中是对应于变量时间的阶数为的Caputo意义下的任意导数。此外,是对应于变量空间的阶数为的Caputo意义下的任意导数。利用移位雅可比多项式基,并通过一些分数阶积分和微分的运算矩阵,将所考虑的问题简化为求解一个线性方程组。所使用的方法不需要离散化。给出了一个测试问题以验证该方法。此外,一些数值测试表明,所提出的方法对于源数据的小扰动是稳定的。进一步地,通过三维图形比较了精确解和数值解,结果表明两者非常吻合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9980/7474203/639e3310003f/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验