Suppr超能文献

通过动力学控制的表面扩散在半导体纳米晶体中打破对称性:一种操纵结结构的策略。

Symmetry breaking in semiconductor nanocrystals via kinetic-controlled surface diffusion: a strategy for manipulating the junction structure.

机构信息

International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.

出版信息

Nanoscale. 2016 Sep 21;8(35):15970-7. doi: 10.1039/c6nr04063b. Epub 2016 Aug 19.

Abstract

The synthesis of semiconductor nanocrystals is usually limited to high-level symmetry, as constrained by the inherent, for example, face-centered cubic or hexagonal close-packed lattices of the crystals. Herein, we report a robust approach for breaking the symmetry of the CdS lattice and obtaining high-quality CdS ultrathin monopods, bipods, tripods, and tetrapods. The success relies on manipulating reaction kinetics by dropwise addition of a precursor solution, which permits deterministic control over the number of CdS monomers in the reaction solution. With rapid monomer supply by fast precursor injection, growth was restricted to only one {111} facet of the nascent CdS tetrahedron to produce an asymmetric ultrathin monopod (a zinc-blende tip with a wurtzite arm). Otherwise, growth monomers could access adjacent {111} facets through surface diffusion and thus lead to the switch of the growth pattern from asymmetric to symmetric to generate an ultrathin multipod (a zinc-blende tip/core with multi-wurtzite arms). These symmetry-controlled photocatalysts were characterized by a fine-tuned zinc blende-wurtzite intergrowth type-II homojunction. After evaluating their structure-dependent solar-hydrogen-production properties, the CdS ultrathin monopod with an appropriate length for controllable charge transportation showed the highest photocatalytic activity.

摘要

半导体纳米晶体的合成通常受到高水平对称性的限制,例如晶体的面心立方或六方密堆积晶格的固有限制。在此,我们报告了一种打破 CdS 晶格对称性并获得高质量 CdS 超薄单足、双足、三足和四足的稳健方法。成功依赖于通过逐滴添加前体溶液来操纵反应动力学,这允许在反应溶液中对 CdS 单体的数量进行确定性控制。通过快速的前体注入快速供应单体,生长仅限于初生 CdS 四面体的一个 {111} 面,从而产生不对称的超薄单足(具有纤锌矿尖端的 wurtzite 臂)。否则,生长单体可以通过表面扩散进入相邻的 {111} 面,从而导致生长模式从不对称到对称的转变,生成超薄多足(具有多 wurtzite 臂的锌矿尖端/核)。这些受对称性控制的光催化剂的特征是精细调整的闪锌矿-纤锌矿 II 型同质结。在评估它们的结构依赖性太阳能制氢性能后,具有适当长度以进行可控电荷输运的 CdS 超薄单足显示出最高的光催化活性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验