International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
Nanoscale. 2016 Sep 21;8(35):15970-7. doi: 10.1039/c6nr04063b. Epub 2016 Aug 19.
The synthesis of semiconductor nanocrystals is usually limited to high-level symmetry, as constrained by the inherent, for example, face-centered cubic or hexagonal close-packed lattices of the crystals. Herein, we report a robust approach for breaking the symmetry of the CdS lattice and obtaining high-quality CdS ultrathin monopods, bipods, tripods, and tetrapods. The success relies on manipulating reaction kinetics by dropwise addition of a precursor solution, which permits deterministic control over the number of CdS monomers in the reaction solution. With rapid monomer supply by fast precursor injection, growth was restricted to only one {111} facet of the nascent CdS tetrahedron to produce an asymmetric ultrathin monopod (a zinc-blende tip with a wurtzite arm). Otherwise, growth monomers could access adjacent {111} facets through surface diffusion and thus lead to the switch of the growth pattern from asymmetric to symmetric to generate an ultrathin multipod (a zinc-blende tip/core with multi-wurtzite arms). These symmetry-controlled photocatalysts were characterized by a fine-tuned zinc blende-wurtzite intergrowth type-II homojunction. After evaluating their structure-dependent solar-hydrogen-production properties, the CdS ultrathin monopod with an appropriate length for controllable charge transportation showed the highest photocatalytic activity.
半导体纳米晶体的合成通常受到高水平对称性的限制,例如晶体的面心立方或六方密堆积晶格的固有限制。在此,我们报告了一种打破 CdS 晶格对称性并获得高质量 CdS 超薄单足、双足、三足和四足的稳健方法。成功依赖于通过逐滴添加前体溶液来操纵反应动力学,这允许在反应溶液中对 CdS 单体的数量进行确定性控制。通过快速的前体注入快速供应单体,生长仅限于初生 CdS 四面体的一个 {111} 面,从而产生不对称的超薄单足(具有纤锌矿尖端的 wurtzite 臂)。否则,生长单体可以通过表面扩散进入相邻的 {111} 面,从而导致生长模式从不对称到对称的转变,生成超薄多足(具有多 wurtzite 臂的锌矿尖端/核)。这些受对称性控制的光催化剂的特征是精细调整的闪锌矿-纤锌矿 II 型同质结。在评估它们的结构依赖性太阳能制氢性能后,具有适当长度以进行可控电荷输运的 CdS 超薄单足显示出最高的光催化活性。