Suppr超能文献

关于在非笛卡尔坐标基础上对受限布朗粒子的描述。

On the description of Brownian particles in confinement on a non-Cartesian coordinates basis.

作者信息

Dagdug Leonardo, García-Chung Angel A, Chacón-Acosta Guillermo

机构信息

Physics Department, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, México D. F. 09340, Mexico.

Applied Mathematics and Systems Department, Universidad Autónoma Metropolitana-Cuajimalpa, Vasco de Quiroga 4871, México D. F. 05348, Mexico.

出版信息

J Chem Phys. 2016 Aug 21;145(7):074105. doi: 10.1063/1.4960652.

Abstract

We developed a theoretical framework to study the diffusion of Brownian point-like particles in bounded geometries in two and three dimensions. We use the Frenet-Serret moving frame as the coordinate system. For narrow tubes and channels, we use an effective one-dimensional description reducing the diffusion equation to a Fick-Jacobs-like equation. From this last equation, we can calculate the effective diffusion coefficient applying Neumann boundary conditions. On one hand, for channels with a straight axis our theoretical approximation for the effective coefficient does coincide with the reported in the literature [D. Reguera and J. M. Rubí, Phys. Rev. E 64, 061106 (2001) and P. Kalinay and J. K. Percus, ibid. 74, 041203 (2006)]. On the other hand, for tubes with a straight axis and circular cross-section our analytical expression does not coincide with the reported by Rubí and Reguera and by Kalinay and Percus, although it is practically identical.

摘要

我们构建了一个理论框架,用于研究二维和三维有界几何结构中布朗点状粒子的扩散。我们使用弗伦内 - 塞雷特活动标架作为坐标系。对于细管和通道,我们采用有效的一维描述,将扩散方程简化为类似菲克 - 雅各布斯的方程。从最后这个方程出发,我们可以应用诺伊曼边界条件来计算有效扩散系数。一方面,对于轴为直线的通道,我们对有效系数的理论近似确实与文献[D. 雷古拉和J. M. 鲁比,《物理评论E》64, 061106 (2001)以及P. 卡利奈和J. K. 珀卡斯,同上,74, 041203 (2006)]中报道的结果一致。另一方面,对于轴为直线且横截面为圆形的细管,我们的解析表达式与鲁比和雷古拉以及卡利奈和珀卡斯所报道的并不一致,尽管实际上非常接近。

相似文献

1
On the description of Brownian particles in confinement on a non-Cartesian coordinates basis.
J Chem Phys. 2016 Aug 21;145(7):074105. doi: 10.1063/1.4960652.
2
Effects of curved midline and varying width on the description of the effective diffusivity of Brownian particles.
J Phys Condens Matter. 2018 May 16;30(19):194001. doi: 10.1088/1361-648X/aaba0d. Epub 2018 Mar 27.
3
Assessing corrections to the Fick-Jacobs equation.
J Chem Phys. 2014 Jul 28;141(4):044118. doi: 10.1063/1.4890740.
6
On the covariant description of diffusion in two-dimensional confined environments.
J Chem Phys. 2015 Feb 14;142(6):064105. doi: 10.1063/1.4907553.
8
When is the next extending of Fick-Jacobs equation necessary?
J Chem Phys. 2013 Aug 7;139(5):054116. doi: 10.1063/1.4817198.
9
Mapping of diffusion in a channel with soft walls.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 1):031109. doi: 10.1103/PhysRevE.83.031109. Epub 2011 Mar 10.

引用本文的文献

1
Entropy Production in Reaction-Diffusion Systems Confined in Narrow Channels.
Entropy (Basel). 2024 May 29;26(6):463. doi: 10.3390/e26060463.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验