Berezhkovskii A M, Pustovoit M A, Bezrukov S M
Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA.
J Chem Phys. 2007 Apr 7;126(13):134706. doi: 10.1063/1.2719193.
Brownian dynamics simulations of the particle diffusing in a long conical tube (the length of the tube is much greater than its smallest radius) are used to study reduction of the three-dimensional diffusion in tubes of varying cross section to an effective one-dimensional description. The authors find that the one-dimensional description in the form of the Fick-Jacobs equation with a position-dependent diffusion coefficient, D(x), suggested by Zwanzig [J. Phys. Chem. 96, 3926 (1992)], with D(x) given by the Reguera-Rubi formula [Phys. Rev. E 64, 061106 (2001)], D(x)=D/sq rt1+R'(x)2, where D is the particle diffusion coefficient in the absence of constraints, and R(x) is the tube radius at x, is valid when |R'(x)|<or=1. When |R'(x)|>1, higher spatial derivatives of the one-dimensional concentration in the effective diffusion equation cannot be neglected anymore as was indicated by Kalinay and Percus [J. Chem. Phys. 122, 204701 (2005)]. Thus the reduction to the effective one-dimensional description is a useful tool only when |R'(x)|<or=1 since in this case one can apply the powerful standard methods to analyze the resulting diffusion equation.
通过对粒子在长锥形管(管的长度远大于其最小半径)中扩散进行布朗动力学模拟,来研究如何将三维扩散在不同横截面的管中简化为有效的一维描述。作者发现,以Fick-Jacobs方程形式的一维描述,其扩散系数D(x)与位置有关,由Zwanzig [《物理化学杂志》96, 3926 (1992)] 提出,其中D(x)由Reguera-Rubi公式 [《物理评论E》64, 061106 (2001)] 给出,即D(x)=D/sq rt1+R'(x)2,这里D是无约束时粒子的扩散系数,R(x)是x处的管半径,当|R'(x)|≤1时是有效的。当|R'(x)|>1时,如Kalinay和Percus [《化学物理杂志》122, 204701 (2005)] 所指出的,有效扩散方程中一维浓度的高阶空间导数就不能再被忽略了。因此,只有当|R'(x)|≤1时,简化为有效的一维描述才是一个有用的工具,因为在这种情况下可以应用强大的标准方法来分析所得的扩散方程。