Wen Meng, Bauke Heiko, Keitel Christoph H
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.
Sci Rep. 2016 Aug 22;6:31624. doi: 10.1038/srep31624.
Different classical theories are commonly applied in various branches of physics to describe the relativistic dynamics of electrons by coupled equations for the orbital motion and spin precession. Exemplarily, we benchmark the Frenkel model and the classical Foldy-Wouthuysen model with spin-dependent forces (Stern-Gerlach forces) to the quantum dynamics as predicted by the Dirac equation. Both classical theories can lead to different or even contradicting predictions how the Stern-Gerlach forces modify the electron's orbital motion, when the electron moves in strong electromagnetic field configurations of emerging high-intensity laser facilities. In this way, one may evaluate the validity and identify the limits of these classical theories via a comparison with possible experiments to provide a proper description of spin-induced dynamics. Our results indicate that the Foldy-Wouthuysen model is qualitatively in better agreement with the Dirac theory than the widely used Frenkel model.
不同的经典理论通常应用于物理学的各个分支,通过轨道运动和自旋进动的耦合方程来描述电子的相对论动力学。例如,我们将具有自旋相关力(斯特恩-盖拉赫力)的弗伦克尔模型和经典的福尔德-伍斯胡森模型与狄拉克方程所预测的量子动力学进行基准测试。当电子在新兴高强度激光设施的强电磁场配置中移动时,这两种经典理论对于斯特恩-盖拉赫力如何改变电子的轨道运动可能会导致不同甚至相互矛盾的预测。通过这种方式,可以通过与可能的实验进行比较来评估这些经典理论的有效性并确定其局限性,从而为自旋诱导动力学提供恰当的描述。我们的结果表明,与广泛使用的弗伦克尔模型相比,福尔德-伍斯胡森模型在定性上与狄拉克理论的一致性更好。