Norris Andrew N
Mechanical and Aerospace Engineering , Rutgers University , Piscataway, NJ 08854-8058, USA.
Proc Math Phys Eng Sci. 2015 May 8;471(2177):20150008. doi: 10.1098/rspa.2015.0008.
The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl (2007 , 3206-3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.
积分消光(IE)定义为散射截面作为波长函数的积分。索尔(2007年,3206 - 3210页。(doi:10.1121/1.2801546))推导了一个用于声散射的IE表达式,该表达式是因果性的,即向前方向的散射波前比背景介质中的入射平面波到达得晚。IE公式基于电磁学结果,默认情况下电磁学中的散射是因果性的。在这里,我们推导了一个适用于因果性和非因果性散射的声学IE公式。一般结果表示为随时间变化的向前散射函数的积分。对于长波长单极子和偶极子振幅为零的散射体,IE简化为一个有限积分。讨论了其对声学隐身的影响,并提出了一种用于宽带声学透明度的新度量。