Zhang Lang, Monticone Francesco, Miller Owen D
Department of Applied Physics and Energy Sciences Institute, Yale University, New Haven, CT, 06511, USA.
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14853, USA.
Nat Commun. 2023 Nov 24;14(1):7724. doi: 10.1038/s41467-023-43221-2.
Scattering theory is the basis of all linear optical and photonic devices, whose spectral response underpins wide-ranging applications from sensing to energy conversion. Unlike the Shannon theory for communication channels, or the Fano theory for electric circuits, understanding the limits of spectral wave scattering remains a notoriously challenging open problem. We introduce a mathematical scattering representation that inherently embeds fundamental principles of causality and passivity into its elemental degrees of freedom. We use this representation to reveal strong constraints in the mathematical structure of scattered fields, and to develop a general theory of the maximum radiative heat transfer in the near field, resolving a long-standing open question. Our approach can be seamlessly applied to high-interest applications across nanophotonics, and appears extensible to general classical and quantum scattering theory.
散射理论是所有线性光学和光子器件的基础,其光谱响应支撑着从传感到能量转换等广泛的应用。与通信信道的香农理论或电路的法诺理论不同,理解光谱波散射的极限仍然是一个极具挑战性的开放性问题。我们引入了一种数学散射表示,它将因果性和无源性的基本原理固有地嵌入到其基本自由度中。我们利用这种表示揭示散射场数学结构中的强约束,并发展出近场最大辐射热传递的一般理论,解决了一个长期存在的开放性问题。我们的方法可以无缝应用于纳米光子学中的高关注度应用,并且似乎可以扩展到一般的经典和量子散射理论。