Suppr超能文献

心房颤动期间左心瓣膜疾病的计算流体动力学建模

Computational fluid dynamics modelling of left valvular heart diseases during atrial fibrillation.

作者信息

Scarsoglio Stefania, Saglietto Andrea, Gaita Fiorenzo, Ridolfi Luca, Anselmino Matteo

机构信息

Department of Mechanical and Aerospace Engineering, Politecnico di Torino , Torino , Italy.

Division of Cardiology, Department of Medical Sciences, "Città della Salute e della Scienza" Hospital, University of Turin , Torino , Italy.

出版信息

PeerJ. 2016 Jul 26;4:e2240. doi: 10.7717/peerj.2240. eCollection 2016.

Abstract

BACKGROUND

Although atrial fibrillation (AF), a common arrhythmia, frequently presents in patients with underlying valvular disease, its hemodynamic contributions are not fully understood. The present work aimed to computationally study how physical conditions imposed by pathologic valvular anatomy act on AF hemodynamics.

METHODS

We simulated AF with different severity grades of left-sided valvular diseases and compared the cardiovascular effects that they exert during AF, compared to lone AF. The fluid dynamics model used here has been recently validated for lone AF and relies on a lumped parameterization of the four heart chambers, together with the systemic and pulmonary circulation. The AF modelling involves: (i) irregular, uncorrelated and faster heart rate; (ii) atrial contractility dysfunction. Three different grades of severity (mild, moderate, severe) were analyzed for each of the four valvulopathies (AS, aortic stenosis, MS, mitral stenosis, AR, aortic regurgitation, MR, mitral regurgitation), by varying-through the valve opening angle-the valve area.

RESULTS

Regurgitation was hemodynamically more relevant than stenosis, as the latter led to inefficient cardiac flow, while the former introduced more drastic fluid dynamics variation. Moreover, mitral valvulopathies were more significant than aortic ones. In case of aortic valve diseases, proper mitral functioning damps out changes at atrial and pulmonary levels. In the case of mitral valvulopathy, the mitral valve lost its regulating capability, thus hemodynamic variations almost equally affected regions upstream and downstream of the valve. In particular, the present study revealed that both mitral and aortic regurgitation strongly affect hemodynamics, followed by mitral stenosis, while aortic stenosis has the least impact among the analyzed valvular diseases.

DISCUSSION

The proposed approach can provide new mechanistic insights as to which valvular pathologies merit more aggressive treatment of AF. Present findings, if clinically confirmed, hold the potential to impact AF management (e.g., adoption of a rhythm control strategy) in specific valvular diseases.

摘要

背景

心房颤动(AF)作为一种常见的心律失常,常在患有潜在瓣膜疾病的患者中出现,但其对血流动力学的影响尚未完全明确。本研究旨在通过计算研究病理性瓣膜解剖结构所导致的物理状况如何作用于心房颤动的血流动力学。

方法

我们模拟了不同严重程度等级的左侧瓣膜疾病引发的心房颤动,并将其在心房颤动期间产生的心血管效应与孤立性心房颤动进行比较。此处使用的流体动力学模型最近已针对孤立性心房颤动进行了验证,该模型基于四个心腔以及体循环和肺循环的集总参数化。心房颤动建模涉及:(i)不规则、不相关且更快的心率;(ii)心房收缩功能障碍。通过改变瓣膜开口角度来改变瓣膜面积,对四种瓣膜病变(主动脉瓣狭窄(AS)、二尖瓣狭窄(MS)、主动脉瓣反流(AR)、二尖瓣反流(MR))中的每一种分析了三种不同的严重程度等级(轻度、中度、重度)。

结果

反流在血流动力学上比狭窄更为重要,因为狭窄会导致心脏血流效率低下,而反流会引起更剧烈的流体动力学变化。此外,二尖瓣病变比主动脉瓣病变更为显著。在主动脉瓣疾病的情况下,二尖瓣的正常功能可减轻心房和肺部水平的变化。在二尖瓣病变的情况下,二尖瓣失去其调节能力,因此血流动力学变化几乎同等程度地影响瓣膜上游和下游区域。特别是,本研究表明二尖瓣和主动脉瓣反流均强烈影响血流动力学,其次是二尖瓣狭窄,而在分析的瓣膜疾病中主动脉瓣狭窄的影响最小。

讨论

所提出的方法可以为哪些瓣膜病变值得对心房颤动进行更积极的治疗提供新的机制性见解。如果临床得到证实,目前的研究结果有可能影响特定瓣膜疾病的心房颤动管理(例如,采用节律控制策略)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/753b/4974931/89d93eff1b3d/peerj-04-2240-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验