Suppr超能文献

不同预处理步骤下先验定义的典型网络的静息态重测信度。

Resting-state test-retest reliability of a priori defined canonical networks over different preprocessing steps.

作者信息

Varikuti Deepthi P, Hoffstaedter Felix, Genon Sarah, Schwender Holger, Reid Andrew T, Eickhoff Simon B

机构信息

Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.

Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, 52425, Juelich, Germany.

出版信息

Brain Struct Funct. 2017 Apr;222(3):1447-1468. doi: 10.1007/s00429-016-1286-x. Epub 2016 Aug 22.

Abstract

Resting-state functional connectivity analysis has become a widely used method for the investigation of human brain connectivity and pathology. The measurement of neuronal activity by functional MRI, however, is impeded by various nuisance signals that reduce the stability of functional connectivity. Several methods exist to address this predicament, but little consensus has yet been reached on the most appropriate approach. Given the crucial importance of reliability for the development of clinical applications, we here investigated the effect of various confound removal approaches on the test-retest reliability of functional-connectivity estimates in two previously defined functional brain networks. Our results showed that gray matter masking improved the reliability of connectivity estimates, whereas denoising based on principal components analysis reduced it. We additionally observed that refraining from using any correction for global signals provided the best test-retest reliability, but failed to reproduce anti-correlations between what have been previously described as antagonistic networks. This suggests that improved reliability can come at the expense of potentially poorer biological validity. Consistent with this, we observed that reliability was proportional to the retained variance, which presumably included structured noise, such as reliable nuisance signals (for instance, noise induced by cardiac processes). We conclude that compromises are necessary between maximizing test-retest reliability and removing variance that may be attributable to non-neuronal sources.

摘要

静息态功能连接分析已成为研究人类大脑连接性和病理学的一种广泛使用的方法。然而,通过功能磁共振成像测量神经元活动受到各种干扰信号的阻碍,这些信号降低了功能连接的稳定性。有几种方法可以解决这一困境,但对于最合适的方法尚未达成共识。鉴于可靠性对于临床应用开发的至关重要性,我们在此研究了各种混杂因素去除方法对两个先前定义的功能性脑网络中功能连接估计的重测可靠性的影响。我们的结果表明,灰质掩蔽提高了连接估计的可靠性,而基于主成分分析的去噪则降低了它。我们还观察到,不使用任何全局信号校正提供了最佳的重测可靠性,但未能重现先前描述为拮抗网络之间的反相关。这表明提高可靠性可能以潜在的较差生物学有效性为代价。与此一致的是,我们观察到可靠性与保留的方差成正比,该方差可能包括结构化噪声,例如可靠的干扰信号(例如,心脏过程引起的噪声)。我们得出结论,在最大化重测可靠性和去除可能归因于非神经元来源的方差之间进行权衡是必要的。

相似文献

1
Resting-state test-retest reliability of a priori defined canonical networks over different preprocessing steps.
Brain Struct Funct. 2017 Apr;222(3):1447-1468. doi: 10.1007/s00429-016-1286-x. Epub 2016 Aug 22.
2
Test-retest reliability of functional connectivity networks during naturalistic fMRI paradigms.
Hum Brain Mapp. 2017 Apr;38(4):2226-2241. doi: 10.1002/hbm.23517. Epub 2017 Jan 17.
3
Is Rest Really Rest? Resting-State Functional Connectivity During Rest and Motor Task Paradigms.
Brain Connect. 2018 Jun;8(5):268-275. doi: 10.1089/brain.2017.0495.
4
Test-retest reliability of dynamic functional connectivity in naturalistic paradigm functional magnetic resonance imaging.
Hum Brain Mapp. 2022 Mar;43(4):1463-1476. doi: 10.1002/hbm.25736. Epub 2021 Dec 6.
5
Nuisance Regression of High-Frequency Functional Magnetic Resonance Imaging Data: Denoising Can Be Noisy.
Brain Connect. 2017 Feb;7(1):13-24. doi: 10.1089/brain.2016.0441. Epub 2017 Jan 5.
6
An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
Neuroimage. 2018 May 1;171:415-436. doi: 10.1016/j.neuroimage.2017.12.073. Epub 2017 Dec 24.
8
Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination.
Neuroimage. 2015 Aug 15;117:67-79. doi: 10.1016/j.neuroimage.2015.05.015. Epub 2015 May 15.
10
Test-retest reliability of graph metrics of resting state MRI functional brain networks: A review.
J Neurosci Methods. 2015 Sep 30;253:183-92. doi: 10.1016/j.jneumeth.2015.05.020. Epub 2015 Jun 11.

引用本文的文献

2
An examination of the reliability of seed-to-seed resting state functional connectivity in tinnitus patients.
Neuroimage Rep. 2023 Feb 15;3(1):100158. doi: 10.1016/j.ynirp.2023.100158. eCollection 2023 Mar.
3
Impact of data processing varieties on DCM estimates of effective connectivity from task-fMRI.
Hum Brain Mapp. 2024 Jun 1;45(8):e26751. doi: 10.1002/hbm.26751.
4
Whole-brain dynamical modelling for classification of Parkinson's disease.
Brain Commun. 2022 Dec 15;5(1):fcac331. doi: 10.1093/braincomms/fcac331. eCollection 2023.
5
Test-retest reliability of modular-relevant analysis in brain functional network.
Front Neurosci. 2022 Dec 7;16:1000863. doi: 10.3389/fnins.2022.1000863. eCollection 2022.
6
Evaluation of functional MRI-based human brain parcellation: a review.
J Neurophysiol. 2022 Jul 1;128(1):197-217. doi: 10.1152/jn.00411.2021. Epub 2022 Jun 8.
7
Towards an efficient validation of dynamical whole-brain models.
Sci Rep. 2022 Mar 14;12(1):4331. doi: 10.1038/s41598-022-07860-7.
8
Resting-state networks in the course of aging-differential insights from studies across the lifespan vs. amongst the old.
Pflugers Arch. 2021 May;473(5):793-803. doi: 10.1007/s00424-021-02520-7. Epub 2021 Feb 12.
10
Age differences in predicting working memory performance from network-based functional connectivity.
Cortex. 2020 Nov;132:441-459. doi: 10.1016/j.cortex.2020.08.012. Epub 2020 Sep 2.

本文引用的文献

1
Local and global contributions to hemodynamic activity in mouse cortex.
J Neurophysiol. 2016 Jun 1;115(6):2931-6. doi: 10.1152/jn.00125.2016. Epub 2016 Mar 16.
2
Differential Patterns of Dysconnectivity in Mirror Neuron and Mentalizing Networks in Schizophrenia.
Schizophr Bull. 2016 Sep;42(5):1135-48. doi: 10.1093/schbul/sbw015. Epub 2016 Mar 2.
3
Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
Neuroimage. 2016 Apr 1;129:133-147. doi: 10.1016/j.neuroimage.2016.01.042. Epub 2016 Jan 27.
4
Individual Variability and Test-Retest Reliability Revealed by Ten Repeated Resting-State Brain Scans over One Month.
PLoS One. 2015 Dec 29;10(12):e0144963. doi: 10.1371/journal.pone.0144963. eCollection 2015.
5
Test-retest reliability of effective connectivity in the face perception network.
Hum Brain Mapp. 2016 Feb;37(2):730-44. doi: 10.1002/hbm.23061. Epub 2015 Nov 27.
6
Data-Driven and Predefined ROI-Based Quantification of Long-Term Resting-State fMRI Reproducibility.
Brain Connect. 2016 Mar;6(2):136-51. doi: 10.1089/brain.2015.0349. Epub 2015 Nov 18.
7
Connectivity-based parcellation: Critique and implications.
Hum Brain Mapp. 2015 Dec;36(12):4771-92. doi: 10.1002/hbm.22933. Epub 2015 Sep 27.
8
Using Edge Voxel Information to Improve Motion Regression for rs-fMRI Connectivity Studies.
Brain Connect. 2015 Nov;5(9):582-95. doi: 10.1089/brain.2014.0321. Epub 2015 Sep 28.
9
Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination.
Neuroimage. 2015 Aug 15;117:67-79. doi: 10.1016/j.neuroimage.2015.05.015. Epub 2015 May 15.
10
Multimodal connectivity mapping of the human left anterior and posterior lateral prefrontal cortex.
Brain Struct Funct. 2016 Jun;221(5):2589-605. doi: 10.1007/s00429-015-1060-5. Epub 2015 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验