Szafran Marcin Jan, Gongerowska Martyna, Gutkowski Paweł, Zakrzewska-Czerwińska Jolanta, Jakimowicz Dagmara
University of Wroclaw, Faculty of Biotechnology, Laboratory of Molecular Microbiology, Wroclaw, Poland
University of Wroclaw, Faculty of Biotechnology, Laboratory of Molecular Microbiology, Wroclaw, Poland.
J Bacteriol. 2016 Oct 7;198(21):3016-3028. doi: 10.1128/JB.00530-16. Print 2016 Nov 1.
Maintaining an optimal level of chromosomal supercoiling is critical for the progression of DNA replication and transcription. Moreover, changes in global supercoiling affect the expression of a large number of genes and play a fundamental role in adapting to stress. Topoisomerase I (TopA) and gyrase are key players in the regulation of bacterial chromosomal topology through their respective abilities to relax and compact DNA. Soil bacteria such as Streptomyces species, which grow as branched, multigenomic hyphae, are subject to environmental stresses that are associated with changes in chromosomal topology. The topological fluctuations modulate the transcriptional activity of a large number of genes and in Streptomyces are related to the production of antibiotics. To better understand the regulation of topological homeostasis in Streptomyces coelicolor, we investigated the interplay between the activities of the topoisomerase-encoding genes topA and gyrBA We show that the expression of both genes is supercoiling sensitive. Remarkably, increased chromosomal supercoiling induces the topA promoter but only slightly influences gyrBA transcription, while DNA relaxation affects the topA promoter only marginally but strongly activates the gyrBA operon. Moreover, we showed that exposure to elevated temperatures induces rapid relaxation, which results in changes in the levels of both topoisomerases. We therefore propose a unique mechanism of S. coelicolor chromosomal topology maintenance based on the supercoiling-dependent stimulation, rather than repression, of the transcription of both topoisomerase genes. These findings provide important insight into the maintenance of topological homeostasis in an industrially important antibiotic producer.
We describe the unique regulation of genes encoding two topoisomerases, topoisomerase I (TopA) and gyrase, in a model Streptomyces species. Our studies demonstrate the coordination of topoisomerase gene regulation, which is crucial for maintenance of topological homeostasis. Streptomyces species are producers of a plethora of biologically active secondary metabolites, including antibiotics, antitumor agents, and immunosuppressants. The significant regulatory factor controlling the secondary metabolism is the global chromosomal topology. Thus, the investigation of chromosomal topology homeostasis in Streptomyces strains is crucial for their use in industrial applications as producers of secondary metabolites.
维持染色体超螺旋的最佳水平对于DNA复制和转录的进行至关重要。此外,整体超螺旋的变化会影响大量基因的表达,并在适应压力方面发挥重要作用。拓扑异构酶I(TopA)和促旋酶通过各自使DNA松弛和压缩的能力,成为细菌染色体拓扑结构调控的关键因素。像链霉菌属这样的土壤细菌以分支的、多基因组菌丝形式生长,会受到与染色体拓扑结构变化相关的环境压力影响。拓扑波动调节大量基因的转录活性,在链霉菌中与抗生素的产生有关。为了更好地理解天蓝色链霉菌中拓扑稳态的调控,我们研究了编码拓扑异构酶的基因topA和gyrBA之间的相互作用。我们发现这两个基因的表达都对超螺旋敏感。值得注意的是,染色体超螺旋增加会诱导topA启动子,但对gyrBA转录的影响较小,而DNA松弛对topA启动子的影响很小,但会强烈激活gyrBA操纵子。此外,我们表明暴露于高温会诱导快速松弛,这导致两种拓扑异构酶水平发生变化。因此,我们基于对两种拓扑异构酶基因转录的超螺旋依赖性刺激而非抑制,提出了一种独特的天蓝色链霉菌染色体拓扑结构维持机制。这些发现为工业上重要的抗生素产生菌中拓扑稳态的维持提供了重要见解。
我们描述了在一种模式链霉菌中编码两种拓扑异构酶,即拓扑异构酶I(TopA)和促旋酶的基因的独特调控。我们的研究证明了拓扑异构酶基因调控的协调性,这对于维持拓扑稳态至关重要。链霉菌属是包括抗生素、抗肿瘤剂和免疫抑制剂在内的多种生物活性次生代谢产物的产生菌。控制次生代谢的重要调节因子是整体染色体拓扑结构。因此,研究链霉菌菌株中的染色体拓扑稳态对于它们作为次生代谢产物产生菌在工业应用中的使用至关重要。