铜的光辉:可见光催化原子转移自由基加成反应及相关过程的独特机遇。

Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.

机构信息

Institut für Organische Chemie, Universität Regensburg , Universitätsstr. 31, 93053 Regensburg, Germany.

出版信息

Acc Chem Res. 2016 Sep 20;49(9):1990-6. doi: 10.1021/acs.accounts.6b00296. Epub 2016 Aug 24.

Abstract

Visible-light photoredox catalysis offers exciting opportunities to achieve challenging carbon-carbon bond formations under mild and ecologically benign conditions. Desired features of photoredox catalysts are photostability, long excited-state lifetimes, strong absorption in the visible region, and high reduction or oxidation potentials to achieve electron transfer to substrates, thus generating radicals that can undergo synthetic organic transformations. These requirements are met in a convincing way by Ru(II)(phenanthroline)3- and Ir(III)(phenylpyridine)3-type complexes and, as a low-cost alternative, by organic dyes that offer a metal-free catalyst but suffer in general from lower photostability. Cu(I)(phenanthroline)2 complexes have been recognized for more than 30 years as photoresponsive compounds with highly negative Cu(I)* → Cu(II) oxidation potentials, but nevertheless, they have not been widely considered as suitable photoredox catalysts, mainly because their excited lifetimes are shorter by a factor of 5 to 10 compared with Ru(II) and Ir(III) complexes, their absorption in the visible region is weak, and their low Cu(II) → Cu(I) reduction potentials might impede the closure of a catalytic cycle for a given process. Contrasting again with Ru(II)L3 and Ir(III)L3 complexes, Cu(I)L2 assemblies undergo more rapid ligand exchange in solution, thus potentially reducing the concentration of the photoactive species. Focusing on atom transfer radical addition (ATRA) reactions and related processes, we highlight recent developments that show the utility of Cu(I)(phenanthroline)2 complexes as photoredox catalysts, demonstrating that despite their short excited-state lifetimes and weak absorption such complexes are efficient at low catalyst loadings. Moreover, some of the inherent disadvantages stated above can even be turned to advantages: (1) the low Cu(II) → Cu(I) reduction potential might efficiently promote reactions via a radical chain pathway, and (2) the tendency for ligand exchange in Cu(I)L2 assemblies allows the efficient synthesis of heteroleptic Cu(I)LL' complexes to tune the steric and electronic properties and also might coordinate and thus activate substrates in the course of a reaction in addition to electron transfer. Moreover, new photoredox cycles have also been discovered beyond the visible-light-induced Cu(I)* → Cu(II) electron transfer that is arguably best known: examples of the Cu(II)* → Cu(I) and Cu(I)* → Cu(0) transitions have been realized, greatly broadening the potential for copper-based photoredox-catalyzed transformations. Finally, a number of organic transformations that are unique to Cu(I) photoredox catalysts have been discovered.

摘要

可见光光氧化还原催化为在温和且生态良性条件下实现具有挑战性的碳-碳键形成提供了令人兴奋的机会。光氧化还原催化剂的理想特征是光稳定性、长激发态寿命、在可见光区域的强吸收以及高还原或氧化电势,以实现向底物的电子转移,从而产生可以经历合成有机转化的自由基。Ru(II)(菲咯啉)3-和 Ir(III)(苯基吡啶)3 型配合物以及作为低成本替代物的有机染料令人信服地满足了这些要求,有机染料提供了无金属催化剂,但通常光稳定性较低。Cu(I)(菲咯啉)2 配合物作为具有高负 Cu(I)→Cu(II)氧化电势的光响应化合物,已被认可超过 30 年,但它们并未被广泛认为是合适的光氧化还原催化剂,主要是因为与 Ru(II)和 Ir(III)配合物相比,其激发寿命短了 5 到 10 倍,在可见光区域的吸收较弱,并且较低的 Cu(II)→Cu(I)还原电势可能会阻碍给定过程的催化循环的闭合。再次与 Ru(II)L3 和 Ir(III)L3 配合物形成对比,Cu(I)L2 组装在溶液中经历更快的配体交换,从而可能降低光活性物质的浓度。聚焦于原子转移自由基加成 (ATRA) 反应和相关过程,我们强调了最近的一些发展,这些发展表明 Cu(I)(菲咯啉)2 配合物作为光氧化还原催化剂的效用,证明尽管它们的激发态寿命短且吸收弱,但在低催化剂负载下它们是有效的。此外,上述一些固有缺点甚至可以转化为优势:(1)低 Cu(II)→Cu(I)还原电势可能通过自由基链途径有效地促进反应,和 (2)Cu(I)L2 组装中的配体交换倾向允许有效地合成杂配 Cu(I)LL'配合物来调节空间和电子性质,并在反应过程中除了电子转移之外还可能配位和因此激活底物。此外,还发现了超越可见光诱导的 Cu(I)→Cu(II)电子转移的新的光氧化还原循环:已经实现了 Cu(II)→Cu(I)和 Cu(I)→Cu(0)跃迁的实例,极大地拓宽了基于铜的光氧化还原催化转化的潜力。最后,发现了一些独特的 Cu(I)光氧化还原催化剂的有机转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索