Richter Craig G, Babo-Rebelo Mariana, Schwartz Denis, Tallon-Baudry Catherine
Laboratoire de Neurosciences Cognitives (ENS - INSERM), Ecole Normale Supérieure - PSL Research University, Paris, France; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.
Laboratoire de Neurosciences Cognitives (ENS - INSERM), Ecole Normale Supérieure - PSL Research University, Paris, France.
Neuroimage. 2017 Feb 1;146:951-958. doi: 10.1016/j.neuroimage.2016.08.043. Epub 2016 Aug 21.
A fundamental feature of the temporal organization of neural activity is phase-amplitude coupling between brain rhythms at different frequencies, where the amplitude of a higher frequency varies according to the phase of a lower frequency. Here, we show that this rule extends to brain-organ interactions. We measured both the infra-slow (~0.05Hz) rhythm intrinsically generated by the stomach - the gastric basal rhythm - using electrogastrography, and spontaneous brain dynamics with magnetoencephalography during resting-state with eyes open. We found significant phase-amplitude coupling between the infra-slow gastric phase and the amplitude of the cortical alpha rhythm (10-11Hz), with gastric phase accounting for 8% of the variance of alpha rhythm amplitude fluctuations. Gastric-alpha coupling was localized to the right anterior insula, and bilaterally to occipito-parietal regions. Transfer entropy, a measure of directionality of information transfer, indicates that gastric-alpha coupling is due to an ascending influence from the stomach to both the right anterior insula and occipito-parietal regions. Our results show that phase-amplitude coupling so far only observed within the brain extends to brain-viscera interactions. They further reveal that the temporal structure of spontaneous brain activity depends not only on neuron and network properties endogenous to the brain, but also on the slow electrical rhythm generated by the stomach.
神经活动时间组织的一个基本特征是不同频率脑节律之间的相位-振幅耦合,即较高频率的振幅会根据较低频率的相位而变化。在此,我们表明这一规律延伸至脑-器官相互作用。我们使用胃电图测量了胃内在产生的超慢(约0.05Hz)节律——胃基础节律,并在睁眼静息状态下用脑磁图测量了自发脑动力学。我们发现超慢胃相位与皮质α节律(10 - 11Hz)的振幅之间存在显著的相位-振幅耦合,胃相位占α节律振幅波动方差的8%。胃-α耦合定位于右侧前脑岛以及双侧枕顶叶区域。转移熵是一种信息传递方向性的度量,它表明胃-α耦合是由于胃对右侧前脑岛和枕顶叶区域的上行影响所致。我们的结果表明,迄今为止仅在脑内观察到的相位-振幅耦合延伸至脑-内脏相互作用。它们进一步揭示,自发脑活动的时间结构不仅取决于脑内源性的神经元和网络特性,还取决于胃产生的缓慢电节律。