Cognitive Neuroimaging Unit, CEA DRF/Joliot, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif-sur-Yvette, France,
LTCI, Telecom ParisTech, Université Paris-Saclay, 75013 Paris, France.
J Neurosci. 2019 Apr 24;39(17):3277-3291. doi: 10.1523/JNEUROSCI.2473-18.2018. Epub 2019 Feb 21.
Precise timing makes the difference between harmony and cacophony, but how the brain achieves precision during timing is unknown. In this study, human participants (7 females, 5 males) generated a time interval while being recorded with magnetoencephalography. Building on the proposal that the coupling of neural oscillations provides a temporal code for information processing in the brain, we tested whether the strength of oscillatory coupling was sensitive to self-generated temporal precision. On a per individual basis, we show the presence of alpha-beta phase-amplitude coupling whose strength was associated with the temporal precision of self-generated time intervals, not with their absolute duration. Our results provide evidence that active oscillatory coupling engages α oscillations in maintaining the precision of an endogenous temporal motor goal encoded in β power; the of self-timed actions. We propose that oscillatory coupling indexes the variance of neuronal computations, which translates into the precision of an individual's behavioral performance. Which neural mechanisms enable precise volitional timing in the brain is unknown, yet accurate and precise timing is essential in every realm of life. In this study, we build on the hypothesis that neural oscillations, and their coupling across time scales, are essential for the coding and for the transmission of information in the brain. We show the presence of alpha-beta phase-amplitude coupling (α-β PAC) whose strength was associated with the temporal precision of self-generated time intervals, not with their absolute duration. α-β PAC indexes the temporal precision with which information is represented in an individual's brain. Our results link large-scale neuronal variability on the one hand, and individuals' timing precision, on the other.
精确的时间把握是产生和谐或不和谐音的关键,但大脑在计时过程中如何实现精确性还不得而知。在这项研究中,人类参与者(7 名女性,5 名男性)在进行脑磁图记录的同时产生时间间隔。基于神经振荡的耦合为大脑中的信息处理提供时间编码的假设,我们测试了振荡耦合的强度是否对自我产生的时间精度敏感。在个体基础上,我们展示了存在α-β 相位-振幅耦合,其强度与自我产生的时间间隔的时间精度相关,而与它们的绝对持续时间无关。我们的结果提供了证据,表明主动振荡耦合通过α振荡参与维持β功率中编码的内源性时间运动目标的精度;自我定时动作的精度。我们提出,振荡耦合指数化了神经元计算的方差,这转化为个体行为表现的精度。在大脑中实现精确的意志计时的神经机制尚不清楚,但准确和精确的计时在生活的各个领域都是必不可少的。在这项研究中,我们基于这样的假设,即神经振荡及其在时间尺度上的耦合,对于大脑中的信息编码和传输是至关重要的。我们展示了存在α-β 相位-振幅耦合(α-β PAC),其强度与自我产生的时间间隔的时间精度相关,而与它们的绝对持续时间无关。α-β PAC 指标化了信息在个体大脑中表示的时间精度。我们的结果将大规模神经元变异性与个体的计时精度联系起来。