Al-Samir Samer, Goossens Dominique, Cartron Jean-Pierre, Nielsen Søren, Scherbarth Frank, Steinlechner Stephan, Gros Gerolf, Endeward Volker
Vegetative Physiologie 4220, Abt. Molekular-und Zellphysiologie, Medizinische Hochschule Hannover Hannover, Germany.
Institut National de la Transfusion Sanguine-Institut National de la Santé et de la Recherche Médicale UMR_S1134 Paris, France.
Front Physiol. 2016 Aug 10;7:347. doi: 10.3389/fphys.2016.00347. eCollection 2016.
We have measured maximal oxygen consumption ([Formula: see text]O2,max) of mice lacking one or two of the established mouse red-cell CO2 channels AQP1, AQP9, and Rhag. We intended to study whether these proteins, by acting as channels for O2, determine O2 exchange in the lung and in the periphery. We found that [Formula: see text]O2,max as determined by the Helox technique is reduced by ~16%, when AQP1 is knocked out, but not when AQP9 or Rhag are lacking. This figure holds for animals respiring normoxic as well as hypoxic gas mixtures. To see whether the reduction of [Formula: see text]O2,max is due to impaired O2 uptake in the lung, we measured carotid arterial O2 saturation (SO2) by pulse oximetry. Neither under normoxic (inspiratory O2 21%) nor under hypoxic conditions (11% O2) is there a difference in SO2 between AQP1null and WT mice, suggesting that AQP1 is not critical for O2 uptake in the lung. The fact that the % reduction of [Formula: see text]O2,max is identical in normoxia and hypoxia indicates moreover that the limitation of [Formula: see text]O2,max is not due to an O2 diffusion problem, neither in the lung nor in the periphery. Instead, it appears likely that AQP1null animals exhibit a reduced [Formula: see text]O2,max due to the reduced wall thickness and muscle mass of the left ventricles of their hearts, as reported previously. We conclude that very likely the properties of the hearts of AQP1 knockout mice cause a reduced maximal cardiac output and thus cause a reduced [Formula: see text]O2,max, which constitutes a new phenotype of these mice.
我们测量了缺乏已确定的小鼠红细胞二氧化碳通道水通道蛋白1(AQP1)、水通道蛋白9(AQP9)和Rhag中的一种或两种的小鼠的最大耗氧量([公式:见正文]O₂,max)。我们旨在研究这些蛋白质作为氧气通道是否决定肺和外周的氧气交换。我们发现,当AQP1基因敲除时,通过氦氧混合气技术测定的[公式:见正文]O₂,max降低了约16%,而当缺乏AQP9或Rhag时则没有降低。这一数据适用于呼吸常氧和低氧气体混合物的动物。为了确定[公式:见正文]O₂,max的降低是否是由于肺对氧气摄取受损所致,我们通过脉搏血氧测定法测量了颈动脉血氧饱和度(SO₂)。在常氧(吸入氧气21%)和低氧条件(11%氧气)下,AQP1基因敲除小鼠和野生型小鼠的SO₂均无差异,这表明AQP1对肺摄取氧气并不关键。此外,[公式:见正文]O₂,max在常氧和低氧条件下降低的百分比相同这一事实表明,[公式:见正文]O₂,max的限制并非由于肺或外周的氧气扩散问题。相反,正如之前报道的那样,AQP1基因敲除动物的[公式:见正文]O₂,max降低可能是由于其心脏左心室壁厚度和肌肉质量减少所致。我们得出结论,很可能AQP1基因敲除小鼠心脏的特性导致最大心输出量降低,从而导致[公式:见正文]O₂,max降低,这构成了这些小鼠的一种新表型。