Hsu Kate
Transfusion Medicine and Immunogenetics Laboratories, MacKay Memorial Hospital, Tamsui, Taiwan.
Front Physiol. 2018 Jun 19;9:733. doi: 10.3389/fphys.2018.00733. eCollection 2018.
The Cl/HCO exchanger band 3 is functionally relevant to blood CO transport. Band 3 is the most abundant membrane protein in human red blood cells (RBCs). Our understanding of its physiological functions mainly came from clinical cases associated with band 3 mutations. Severe reduction in band 3 expression affects blood HCO/CO metabolism. What could happen physiologically if band 3 expression is elevated instead? In some areas of Southeast Asia, about 1-10% of the populations express GP.Mur, a glycophorin B-A-B hybrid membrane protein important in the field of transfusion medicine. GP.Mur functions to promote band 3 expression, and GP.Mur red cells can be deemed as a naturally occurred model for higher band 3 expression. This review first compares the functional consequences of band 3 at different levels, and suggests a critical role of band 3 in postnatal CO respiration. The second part of the review explores the transport of water, which is the other substrate for intra-erythrocytic CO/HCO conversion (an essential step in blood CO transport). Despite that water is considered unlimited physiologically, it is unclear whether water channel aquaporin-1 (AQP1) abundantly expressed in RBCs is functionally involved in CO transport. Research in this area is complicated by the fact that the HO/CO-transporting function of AQP1 is replaceable by other erythrocyte channels/transporters (e.g., UT-B/GLUT1 for HO; RhAG for CO). Recently, using carbonic anhydrase II (CAII)-filled erythrocyte vesicles, AQP1 has been demonstrated to transport water for the CAII-mediated reaction, CO + HO ⇌ HCO + H. AQP1 is structurally associated with some population of band 3 complexes on the erythrocyte membrane in an osmotically responsive fashion. The current findings reveal transient interaction among components within the band 3-central, CO-transport metabolon (AQP1, band 3, CAII and deoxygenated hemoglobin). Their dynamic interaction is envisioned to facilitate blood CO respiration, in the presence of constantly changing osmotic and hemodynamic stresses during circulation.
氯离子/碳酸氢根交换体3与血液中二氧化碳的运输功能相关。带3是人类红细胞(RBC)中最丰富的膜蛋白。我们对其生理功能的了解主要来自与带3突变相关的临床病例。带3表达的严重降低会影响血液中碳酸氢根/二氧化碳的代谢。那么,如果带3的表达升高,生理上会发生什么呢?在东南亚的一些地区,约1%-10%的人口表达GP.Mur,这是一种在输血医学领域很重要的糖蛋白B-A-B杂合膜蛋白。GP.Mur的作用是促进带3的表达,而表达GP.Mur的红细胞可被视为带3高表达的天然模型。本综述首先比较了不同水平下带3的功能后果,并提出带3在出生后二氧化碳呼吸中起关键作用。综述的第二部分探讨了水的运输,水是红细胞内二氧化碳/碳酸氢根转化(血液中二氧化碳运输的关键步骤)的另一种底物。尽管水在生理上被认为是无限的,但尚不清楚在红细胞中大量表达的水通道水通道蛋白-1(AQP1)在功能上是否参与二氧化碳运输。该领域的研究因以下事实而变得复杂:AQP1的水/二氧化碳运输功能可被其他红细胞通道/转运体替代(例如,水通道由UT-B/GLUT1负责;二氧化碳通道由RhAG负责)。最近,使用填充碳酸酐酶II(CAII)的红细胞囊泡,已证明AQP1为CAII介导的反应CO + H₂O ⇌ HCO₃⁻ + H⁺运输水。AQP1在红细胞膜上以渗透反应的方式与一些带3复合物群体在结构上相关联。目前的研究结果揭示了带3中心二氧化碳运输代谢体(AQP1、带3、CAII和脱氧血红蛋白)内各成分之间的瞬时相互作用。预计它们的动态相互作用在循环过程中存在不断变化的渗透和血流动力学应力的情况下,有助于血液中的二氧化碳呼吸。