Suppr超能文献

氧化锌-二氧化硅-银纳米复合材料:独特的一锅法合成及其增强的催化和抗菌性能。

Zinc-oxide-silica-silver nanocomposite: Unique one-pot synthesis and enhanced catalytic and anti-bacterial performance.

作者信息

Kokate Mangesh, Garadkar Kalyanrao, Gole Anand

机构信息

Advanced Materials and Green Chemistry Division, Tata Chemicals Ltd. - Innovation Centre, Survey No 315, Hissa No 1-14, Ambedveth (V), Paud Road, Mulshi, Pune 412111, India; Nanomaterial Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004, India.

Nanomaterial Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004, India.

出版信息

J Colloid Interface Sci. 2016 Dec 1;483:249-260. doi: 10.1016/j.jcis.2016.08.039. Epub 2016 Aug 18.

Abstract

We describe herein a unique approach to synthesize zinc oxide-silica-silver (ZnO-SiO2-Ag) nanocomposite, in a simple, one-pot process. The typical process for ZnO synthesis by alkaline precipitation of zinc salts has been tweaked to replace alkali by alkaline sodium silicate. The free acid from zinc salts helps in the synthesis of silica nanoparticles, whereas the alkalinity of sodium silicate precipitates the zinc salts. Addition of silver ions into the reaction pot prior to addition of sodium silicate, and subsequent reduction by borohydride, gives additional functionality of metallic centres for catalytic applications. The synthesis strategy is based on our recent work typically involving acid-base type of cross-reactions and demonstrates a novel strategy to synthesize nanocomposites in a one-pot approach. Each component in the composite offers a unique feature. ZnO besides displaying mild catalytic and anti-bacterial behaviour is an excellent and a cheap 3-D support for heterogeneous catalysis. Silver nanoparticles enhance the catalytic & anti-bacterial properties of ZnO. Silica is an important part of the composite; which not only "glues" the two nanoparticles thereby stabilizing the nanocomposite, but also significantly enhances the surface area of the composite; which is an attractive feature of any catalyst composite. The nanocomposite is found to show excellent catalytic performance with very high turnover frequencies (TOFs) when studied for catalytic reduction of Rhodamine B (RhB) and 4-Nitrophenol (4-NP). Additionally, the composite has been tested for its anti-bacterial properties on three different bacterial strains i.e. E. coli, B. Cereus and Bacillus firmus. The mechanism for enhancement of catalytic performance has been probed by understanding the role of silica in offering accessibility to the catalyst via its porous high surface area network. The nanocomposite has been characterized by a host of different analytical techniques. The uniqueness of our product and process stems from the novel synthesis strategy, the choice and combination of the three moieties, increased surface area offered by silica, and cost effectiveness, thereby making our product and process commercially viable and sustainable for industrial applications.

摘要

我们在此描述了一种独特的方法,通过简单的一锅法合成氧化锌-二氧化硅-银(ZnO-SiO₂-Ag)纳米复合材料。通过锌盐的碱性沉淀合成氧化锌的典型过程已被调整,用硅酸钠碱替代碱。锌盐中的游离酸有助于二氧化硅纳米颗粒的合成,而硅酸钠的碱性使锌盐沉淀。在加入硅酸钠之前将银离子加入反应釜中,随后用硼氢化钠还原,可为催化应用提供金属中心的额外功能。该合成策略基于我们最近的工作,通常涉及酸碱类型的交叉反应,并展示了一种通过一锅法合成纳米复合材料的新策略。复合材料中的每个组分都具有独特的特性。氧化锌除了具有温和的催化和抗菌性能外,还是用于多相催化的优良且廉价的三维载体。银纳米颗粒增强了氧化锌的催化和抗菌性能。二氧化硅是复合材料的重要组成部分;它不仅“粘合”了两种纳米颗粒,从而稳定了纳米复合材料,还显著增加了复合材料的表面积;这是任何催化剂复合材料都具有的吸引人的特性。当研究该纳米复合材料对罗丹明B(RhB)和4-硝基苯酚(4-NP)的催化还原时,发现其具有极高的周转频率(TOF),表现出优异的催化性能。此外,该复合材料已针对三种不同的细菌菌株,即大肠杆菌、蜡样芽孢杆菌和坚强芽孢杆菌,测试了其抗菌性能。通过了解二氧化硅通过其多孔高表面积网络为催化剂提供可及性的作用,探讨了催化性能增强的机制。该纳米复合材料已通过多种不同的分析技术进行了表征。我们产品和工艺的独特性源于新颖的合成策略、三种成分的选择和组合、二氧化硅提供的增加的表面积以及成本效益,从而使我们的产品和工艺在商业上可行且对工业应用具有可持续性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验