Suppr超能文献

DNA结合和阻遏功能是番茄热应激转录因子HsfB1周转的先决条件。

DNA-binding and repressor function are prerequisites for the turnover of the tomato heat stress transcription factor HsfB1.

作者信息

Röth Sascha, Mirus Oliver, Bublak Daniela, Scharf Klaus-Dieter, Schleiff Enrico

机构信息

Molecular Cell Biology of Plants, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany.

Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany.

出版信息

Plant J. 2017 Jan;89(1):31-44. doi: 10.1111/tpj.13317. Epub 2016 Nov 14.

Abstract

HsfB1 is a central regulator of heat stress (HS) response and functions dually as a transcriptional co-activator of HsfA1a and a general repressor in tomato. HsfB1 is efficiently synthesized during the onset of HS and rapidly removed in the course of attenuation during the recovery phase. Initial results point to a complex regime modulating HsfB1 abundance involving the molecular chaperone Hsp90. However, the molecular determinants affecting HsfB1 stability needed to be established. We provide experimental evidence that DNA-bound HsfB1 is efficiently targeted for degradation when active as a transcriptional repressor. Manipulation of the DNA-binding affinity by mutating the HsfB1 DNA-binding domain directly influences the stability of the transcription factor. During HS, HsfB1 is stabilized, probably due to co-activator complex formation with HsfA1a. The process of HsfB1 degradation involves nuclear localized Hsp90. The molecular determinants of HsfB1 turnover identified in here are so far seemingly unique. A mutational switch of the R/KLFGV repressor motif's arginine and lysine implies that the abundance of other R/KLFGV type Hsfs, if not other transcription factors as well, might be modulated by a comparable mechanism. Thus, we propose a versatile mechanism for strict abundance control of the stress-induced transcription factor HsfB1 for the recovery phase, and this mechanism constitutes a form of transcription factor removal from promoters by degradation inside the nucleus.

摘要

热休克因子B1(HsfB1)是热应激(HS)反应的核心调节因子,在番茄中具有双重功能,既是热休克因子A1a(HsfA1a)的转录共激活因子,又是一般的阻遏因子。HsfB1在热应激开始时高效合成,并在恢复阶段衰减过程中迅速被清除。初步结果表明,一种涉及分子伴侣Hsp90的复杂机制调节着HsfB1的丰度。然而,影响HsfB1稳定性的分子决定因素仍有待确定。我们提供的实验证据表明,当作为转录阻遏因子发挥作用时,与DNA结合的HsfB1会被有效地靶向降解。通过突变HsfB1的DNA结合结构域来操纵DNA结合亲和力,会直接影响转录因子的稳定性。在热应激期间,HsfB1被稳定下来,这可能是由于与HsfA1a形成了共激活因子复合物。HsfB1的降解过程涉及定位于细胞核的Hsp90。本文确定的HsfB1周转的分子决定因素目前看来是独一无二的。R/KLFGV阻遏基序中精氨酸和赖氨酸的突变转换表明,其他R/KLFGV型热休克因子(如果不是其他转录因子的话)的丰度可能会受到类似机制的调节。因此,我们提出了一种通用机制,用于在恢复阶段严格控制应激诱导的转录因子HsfB1的丰度,这种机制构成了一种通过在细胞核内降解将转录因子从启动子上移除的形式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验