Allgemeine Genetik, Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany.
Eur J Cell Biol. 2010 Feb-Mar;89(2-3):126-32. doi: 10.1016/j.ejcb.2009.10.012. Epub 2009 Nov 27.
Class A heat shock factors (Hsfs) of Arabidopsis are known to function as transcriptional activators of stress genes. Genetic and functional analysis suggests that HsfA1a and HsfA1b are central regulators required in the early phase of the heat shock response, which have the capacity to functionally replace each other. In order to examine Hsf interaction in vivo, we conducted interaction assays using bimolecular fluorescence complementation (BiFC) on Arabidopsis protoplasts co-transformed with suitable Hsf-YFP fusion genes. BiFC assays were quantified with confocal laser scanning microscopy and flow cytometry, and confirmed with immunoprecipitation assays. For each Hsf we could not only demonstrate homomeric interactions but also detect heteromeric interaction between HsfA1a and HsfA1b. Truncated versions of these of Hsfs, containing deletions of the oligomerization domains (ODs), provided clear evidence that the ODs are required and sufficient for the HSF interaction in vivo. By contrast there was only homomeric but no heteromeric interaction detected between two different class B Hsf transcription factors (HsfB1 and HsfB2b) in a yeast two-hybrid assay. HsfB1/HsfB2b functions are not directly linked with the expression of conventional heat shock genes; class B Hsfs are devoid of the activation domain motif conserved in class A Hsfs. In order to identify other proteins interacting with HsfB1 and HsfB2b we performed yeast two-hybrid screenings of cDNA libraries. Three of the identified proteins were common to both screenings. This suggests that HsfB1 and HsfB2b may be involved in complex regulatory networks, which are linked to other stress responses and signaling processes.
拟南芥 A 类热休克因子 (Hsfs) 已知作为应激基因的转录激活因子发挥作用。遗传和功能分析表明,HsfA1a 和 HsfA1b 是热休克反应早期所必需的核心调节剂,它们具有功能上相互替代的能力。为了在体内研究 Hsf 相互作用,我们在共转化合适的 Hsf-YFP 融合基因的拟南芥原生质体上进行了双分子荧光互补 (BiFC) 相互作用测定。使用共聚焦激光扫描显微镜和流式细胞术对 BiFC 测定进行定量,并通过免疫沉淀测定进行验证。对于每种 Hsf,我们不仅能够证明同源相互作用,还能够检测 HsfA1a 和 HsfA1b 之间的异源相互作用。这些 Hsfs 的截断版本,包含寡聚化结构域 (OD) 的缺失,提供了明确的证据,表明 OD 是体内 HSF 相互作用所必需和充分的。相比之下,在酵母双杂交测定中,两种不同的 B 类 Hsf 转录因子 (HsfB1 和 HsfB2b) 之间仅检测到同源相互作用,而没有异源相互作用。HsfB1/HsfB2b 的功能与常规热休克基因的表达没有直接联系;B 类 Hsfs 缺乏在 A 类 Hsfs 中保守的激活域模体。为了鉴定与 HsfB1 和 HsfB2b 相互作用的其他蛋白质,我们进行了 cDNA 文库的酵母双杂交筛选。在两个筛选中都发现了三种共同的蛋白质。这表明 HsfB1 和 HsfB2b 可能参与复杂的调控网络,这些网络与其他应激反应和信号转导过程有关。