Ouyang Wenjun, Dou Wenjie, Jain Amber, Subotnik Joseph E
Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States.
J Chem Theory Comput. 2016 Sep 13;12(9):4178-83. doi: 10.1021/acs.jctc.6b00533. Epub 2016 Aug 26.
We investigate barrier crossings within the context of the Anderson-Holstein model, as relevant to coupled nuclear-electronic dynamics near a metal surface. Beyond standard electronic friction or conventional surface-hopping dynamics, we show that a broadened classical master equation can recover both the correct nonadiabatic and the correct adiabatic dynamics for a general escape problem (even with possibly multiple escape channels). In the case of a large barrier with only a single escape channel, we also find a surprising conclusion: electronic friction can recover Marcus's nonadiabatic theory of electron transfer in the limit of small molecule-metal couplings. The latter conclusion establishes a hidden connection between Marcus's nonadiabatic theory and Kramer's adiabatic theory of rate constants.
我们在安德森 - 霍尔斯坦模型的背景下研究势垒穿越问题,这与金属表面附近的核 - 电子耦合动力学相关。除了标准的电子摩擦或传统的表面跳跃动力学之外,我们表明,对于一般的逃逸问题(即使可能存在多个逃逸通道),一个广义的经典主方程能够恢复正确的非绝热动力学和正确的绝热动力学。在只有一个逃逸通道的高势垒情况下,我们还得出了一个惊人的结论:在小分子 - 金属耦合较弱的极限情况下,电子摩擦能够恢复马库斯的电子转移非绝热理论。后一个结论在马库斯的非绝热理论和克莱默斯的速率常数绝热理论之间建立了一种隐藏的联系。