Suppr超能文献

一系列氨甲基哌啶酮对二肽基肽酶-IV抑制活性的对接-定量构效关系混合研究

Hybrid docking-QSAR studies of DPP-IV inhibition activities of a series of aminomethyl-piperidones.

作者信息

Amini Zohreh, Fatemi Mohammad Hossein, Gharaghani Sajjad

机构信息

Chemometrics Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran.

Chemometrics Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran.

出版信息

Comput Biol Chem. 2016 Oct;64:335-345. doi: 10.1016/j.compbiolchem.2016.08.003. Epub 2016 Aug 20.

Abstract

In this study, the dipeptidyl peptidase-IV (DPP-IV) inhibition activities of a series of novel aminomethyl-piperidones were investigated by molecular docking studies and modeled by quantitative structure-activity relationship (QSAR) methodology. Molecular docking studies were used to find the best conformations of the studied molecules in the active site of DPP-IV protein. Then the best docking-derived conformation for each molecule was applied for calculating the molecular descriptors. Multiple linear regression (MLR) and Levenberg-Marquardt artificial neural network (LM-ANN) were conducted on descriptors derived by docking. The results of these models revealed the superiority of LM-ANN model over MLR which showed the nonlinear relationship between the selected molecular descriptors and DPP-IV inhibition activities of studied molecules. The correlation coefficient (R) and standard error (SE) of ANN model were 0.983 and 0.103 for the training set and 0.966 and 0.168 for the external test set. These results showed a close agreement between the experimental and calculated values of pIC which demonstrated the robustness of LM-ANN model in modeling of aminomethyl-piperidones. Applicability domain analysis and sensitivity analysis were applied on the obtained models. This study gives useful information for further experimental studies on DPP-IV inhibitors. The results of this work reveal the applicability of hybrid docking-QSAR methodology in ligand-protein studies.

摘要

在本研究中,通过分子对接研究对一系列新型氨甲基哌啶酮的二肽基肽酶-IV(DPP-IV)抑制活性进行了研究,并采用定量构效关系(QSAR)方法进行建模。分子对接研究用于寻找所研究分子在DPP-IV蛋白活性位点的最佳构象。然后将每个分子通过对接得到的最佳构象用于计算分子描述符。对对接得到的描述符进行多元线性回归(MLR)和Levenberg-Marquardt人工神经网络(LM-ANN)分析。这些模型的结果显示LM-ANN模型优于MLR模型,这表明所选分子描述符与所研究分子的DPP-IV抑制活性之间存在非线性关系。ANN模型训练集的相关系数(R)和标准误差(SE)分别为0.983和0.103,外部测试集的相关系数和标准误差分别为0.966和0.168。这些结果表明pIC的实验值和计算值之间吻合良好,证明了LM-ANN模型在氨甲基哌啶酮建模中的稳健性。对所得模型进行了适用域分析和敏感性分析。本研究为DPP-IV抑制剂的进一步实验研究提供了有用信息。这项工作的结果揭示了混合对接-QSAR方法在配体-蛋白质研究中的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验