Suppr超能文献

在i2b2中扩展跨专业电子健康记录数据

Expanding Interprofessional EHR Data in i2b2.

作者信息

Westra Bonnie L, Christie Beverly, Johnson Steven G, Pruinelli Lisiane, LaFlamme Anne, Park Jung In, Sherman Suzan G, Byrne Matthew D, Ranallo Piper, Speedie Stuart

机构信息

University of Minnesota, School of Nursing, Minneapolis, MN;; University of Minnesota, Institute for Health Informatics, Minneapolis, MN;

Fairview Health Services, Minneapolis, MN;

出版信息

AMIA Jt Summits Transl Sci Proc. 2016 Jul 20;2016:260-8. eCollection 2016.

Abstract

Emerging issues of team-based care, precision medicine, and big data science underscore the need for health information technology (HIT) tools for integrating complex data in consistent ways to achieve the triple aims of improving patient outcomes, patient experience, and cost reductions. The purpose of this study was to demonstrate the feasibility of creating a hierarchical flowsheet ontology in i2b2 using data-derived information models and determine the underlying informatics and technical issues. This study is the first of its kind to use information models that aggregate team-based care across time, disciplines, and settings into 14 information models that were integrated into i2b2 in a hierarchical model. In the process of successfully creating a hierarchical ontology for flowsheet data in i2b2, we uncovered a variety of informatics and technical issues described in this paper.

摘要

基于团队的医疗、精准医学和大数据科学等新出现的问题凸显了对健康信息技术(HIT)工具的需求,这些工具需要以一致的方式整合复杂数据,以实现改善患者结局、提升患者体验和降低成本这三大目标。本研究的目的是证明使用数据衍生的信息模型在i2b2中创建分层流程图本体的可行性,并确定潜在的信息学和技术问题。本研究首次使用信息模型,这些模型将跨时间、学科和环境的基于团队的医疗汇总成14个信息模型,并以分层模型集成到i2b2中。在成功为i2b2中的流程图数据创建分层本体的过程中,我们发现了本文中描述的各种信息学和技术问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe52/5001775/bba823152c4f/2379213f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验