Suppr超能文献

细菌细胞壁合成的膜阶段作为抗生素靶标。

The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets.

机构信息

Department of Membrane Biochemistry and Biophysics, Utrecht University, Utrecht 3584 CH, The Netherlands.

出版信息

Antibiotics (Basel). 2016 Aug 26;5(3):28. doi: 10.3390/antibiotics5030028.

Abstract

Peptidoglycan is the major component of the cell envelope of virtually all bacteria. It has structural roles and acts as a selective sieve for molecules from the outer environment. Peptidoglycan synthesis is therefore one of the most important biogenesis pathways in bacteria and has been studied extensively over the last twenty years. The pathway starts in the cytoplasm, continues in the cytoplasmic membrane and finishes in the periplasmic space, where the precursor is polymerized into the peptidoglycan layer. A number of proteins involved in this pathway, such as the Mur enzymes and the penicillin binding proteins (PBPs), have been studied and regarded as good targets for antibiotics. The present review focuses on the membrane steps of peptidoglycan synthesis that involve two enzymes, MraY and MurG, the inhibitors of these enzymes and the inhibition mechanisms. We also discuss the challenges of targeting these two cytoplasmic membrane (associated) proteins in bacterial cells and the perspectives on how to overcome the issues.

摘要

肽聚糖是几乎所有细菌的细胞包膜的主要成分。它具有结构作用,并作为外部环境分子的选择性筛子。因此,肽聚糖合成是细菌中最重要的生物发生途径之一,在过去的二十年中得到了广泛的研究。该途径始于细胞质,在细胞质膜中继续,并在周质空间中完成,在前体在那里聚合到肽聚糖层中。许多参与该途径的蛋白质,如 Mur 酶和青霉素结合蛋白(PBPs),已经被研究并被认为是抗生素的良好靶点。本综述重点介绍涉及两种酶(MraY 和 MurG)的肽聚糖合成的膜步骤、这些酶的抑制剂以及抑制机制。我们还讨论了在细菌细胞中靶向这两种细胞质膜(相关)蛋白的挑战,以及如何克服这些问题的观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccc0/5039524/1c35f53349ac/antibiotics-05-00028-g001.jpg

相似文献

1
The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets.
Antibiotics (Basel). 2016 Aug 26;5(3):28. doi: 10.3390/antibiotics5030028.
3
MreB and MurG as scaffolds for the cytoplasmic steps of peptidoglycan biosynthesis.
Environ Microbiol. 2013 Dec;15(12):3218-28. doi: 10.1111/1462-2920.12171. Epub 2013 Jul 4.
4
Lipid Requirements for the Enzymatic Activity of MraY Translocases and in Vitro Reconstitution of the Lipid II Synthesis Pathway.
J Biol Chem. 2016 Jan 29;291(5):2535-46. doi: 10.1074/jbc.M115.664292. Epub 2015 Nov 30.
6
Penicillin-Binding Proteins (PBPs) and Bacterial Cell Wall Elongation Complexes.
Subcell Biochem. 2019;93:273-289. doi: 10.1007/978-3-030-28151-9_8.
8
Assay for identification of inhibitors for bacterial MraY translocase or MurG transferase.
Anal Biochem. 2000 May 1;280(2):315-9. doi: 10.1006/abio.2000.4530.

引用本文的文献

3
Synergistic potential of Leu-teixobactin and cefepime against multidrug-resistant Staphylococcus aureus.
BMC Microbiol. 2024 Oct 29;24(1):442. doi: 10.1186/s12866-024-03577-x.
4
6
Anti-Infection of Oral Microorganisms from Herbal Medicine of Ruiz & Pav.
Drug Des Devel Ther. 2024 Jun 25;18:2531-2553. doi: 10.2147/DDDT.S453375. eCollection 2024.
7
Evaluating the Effectiveness of Extract as a Natural Anti-Caries Material.
Pharmaceuticals (Basel). 2024 May 8;17(5):603. doi: 10.3390/ph17050603.
8
Novel non-helical antimicrobial peptides insert into and fuse lipid model membranes.
Soft Matter. 2024 May 22;20(20):4088-4101. doi: 10.1039/d4sm00220b.
9
Interspecies variability in protein binding of antibiotics basis for translational PK/PD studies-a case study using cefazolin.
Antimicrob Agents Chemother. 2024 Apr 3;68(4):e0164723. doi: 10.1128/aac.01647-23. Epub 2024 Feb 20.
10
Ultrastructural and morphological studies on variables affecting with selected commercial antibiotics.
Cell Surf. 2024 Jan 14;11:100120. doi: 10.1016/j.tcsw.2024.100120. eCollection 2024 Jun.

本文引用的文献

3
New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies.
J Biol Chem. 2016 Jul 15;291(29):15057-68. doi: 10.1074/jbc.M116.717884. Epub 2016 May 18.
4
Structural insights into inhibition of lipid I production in bacterial cell wall synthesis.
Nature. 2016 May 26;533(7604):557-560. doi: 10.1038/nature17636. Epub 2016 Apr 18.
5
Structure and Function of Surface Polysaccharides of Staphylococcus aureus.
Curr Top Microbiol Immunol. 2017;409:57-93. doi: 10.1007/82_2015_5018.
6
UDP-GlcNAc pathway: Potential target for inhibitor discovery against M. tuberculosis.
Eur J Pharm Sci. 2016 Feb 15;83:62-70. doi: 10.1016/j.ejps.2015.12.013. Epub 2015 Dec 10.
7
Lipid Requirements for the Enzymatic Activity of MraY Translocases and in Vitro Reconstitution of the Lipid II Synthesis Pathway.
J Biol Chem. 2016 Jan 29;291(5):2535-46. doi: 10.1074/jbc.M115.664292. Epub 2015 Nov 30.
8
Activities and regulation of peptidoglycan synthases.
Philos Trans R Soc Lond B Biol Sci. 2015 Oct 5;370(1679). doi: 10.1098/rstb.2015.0031.
9
Chemoenzymatic syntheses of water-soluble lipid I fluorescent probes.
Tetrahedron Lett. 2015 Jun 3;56(23):3441-3446. doi: 10.1016/j.tetlet.2015.01.044.
10
5'-Methylene-triazole-substituted-aminoribosyl uridines as MraY inhibitors: synthesis, biological evaluation and molecular modeling.
Org Biomol Chem. 2015 Jul 14;13(26):7193-222. doi: 10.1039/c5ob00707k. Epub 2015 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验