文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

靶向的多表位疫苗(MEV)的免疫信息学设计:一种新型计算方法。

Immunoinformatics Design of a Multiepitope Vaccine (MEV) Targeting : A Novel Computational Approach.

作者信息

Naorem Romen Singh, Pangabam Bandana Devi, Bora Sudipta Sankar, Fekete Csaba, Teli Anju Barhai

机构信息

Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat 785001, India.

Department of Molecular Biology and Microbiology, University of Pecs, Ifusag utja. 6, 7624 Pecs, Hungary.

出版信息

Pathogens. 2024 Oct 21;13(10):916. doi: 10.3390/pathogens13100916.


DOI:10.3390/pathogens13100916
PMID:39452787
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11509883/
Abstract

Dental caries, a persistent oral health challenge primarily linked to , extends its implications beyond dental decay, affecting over 4 billion individuals globally. Despite its historical association with childhood, dental caries often persists into adulthood with prevalence rates ranging from 60 to 90% in children and 26 to 85% in adults. Currently, there is a dearth of multiepitope vaccines (MEVs) specifically designed to combat . To address this gap, we employed an immunoinformatics approach for MEV design, identifying five promising vaccine candidates (PBP2X, PBP2b, MurG, ATP-F, and AGPAT) based on antigenicity and conservation using several tools including CELLO v.2.5, Vaxign, v2.0, ANTIGENpro, and AllerTop v2.0 tools. Subsequent identification of linear B-cell and T-cell epitopes by SVMTrip and NetCTL/NetMHC II tools, respectively, guided the construction of a MEV comprising 10 Cytotoxic T Lymphocyte (CTL) epitopes, 5 Helper T Lymphocyte (HTL) epitopes, and 5 linear B-cell epitopes, interconnected by suitable linkers. The resultant MEV demonstrated high antigenicity, solubility, and structural stability. In silico immune simulations showcased the MEV's potential to elicit robust humoral and cell-mediated immune responses. Molecular docking studies revealed strong interactions between the MEV construct and Toll-Like Receptors (TLRs) and Major Histocompatibility Complex (MHC) molecules. Remarkably, the MEV-TLR-4 complexes exhibited a low energy score, high binding affinity, and a low dissociation constant. The Molecular Dynamic (MD) simulation analysis suggested that MEV-TLR-4 complexes had the highest stability and minimal conformational changes indicating equilibrium within 40 nanosecond time frames. Comprehensive computational analyses strongly support the potential of the proposed MEV to combat dental caries and associated infections. The study's computational assays yielded promising results, but further validation through in vitro and in vivo experiments is needed to assess its efficacy and safety.

摘要

龋齿是一项主要与……相关的持续性口腔健康挑战,其影响范围超出了牙齿龋坏,全球超过40亿人受其影响。尽管龋齿在历史上常与儿童期相关联,但它在成年期也常常持续存在,儿童患病率在60%至90%之间,成人患病率在26%至85%之间。目前,专门设计用于对抗……的多表位疫苗(MEV)十分匮乏。为了填补这一空白,我们采用免疫信息学方法进行MEV设计,使用包括CELLO v.2.5、Vaxign v2.0、ANTIGENpro和AllerTop v2.0工具在内的多种工具,基于抗原性和保守性确定了五种有前景的疫苗候选物(PBP2X、PBP2b、MurG、ATP - F和AGPAT)。随后分别通过SVMTrip和NetCTL/NetMHC II工具鉴定线性B细胞和T细胞表位,指导构建了一种包含10个细胞毒性T淋巴细胞(CTL)表位、5个辅助性T淋巴细胞(HTL)表位和5个线性B细胞表位的MEV,这些表位通过合适的连接子相互连接。所得的MEV表现出高抗原性、溶解性和结构稳定性。计算机模拟免疫显示MEV有引发强大体液免疫和细胞介导免疫反应的潜力。分子对接研究揭示了MEV构建体与Toll样受体(TLR)和主要组织相容性复合体(MHC)分子之间的强相互作用。值得注意的是,MEV - TLR - 4复合物表现出低能量得分、高结合亲和力和低解离常数。分子动力学(MD)模拟分析表明,MEV - TLR - 4复合物具有最高的稳定性和最小的构象变化,表明在40纳秒时间范围内处于平衡状态。全面的计算分析有力地支持了所提出的MEV对抗龋齿及相关感染的潜力。该研究的计算分析产生了有前景的结果,但需要通过体外和体内实验进一步验证以评估其疗效和安全性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/8ca590a6d3b7/pathogens-13-00916-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/b9101057091c/pathogens-13-00916-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/5fe713fbca59/pathogens-13-00916-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/3f46f8836199/pathogens-13-00916-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/1a7ad924c9ad/pathogens-13-00916-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/e1c103b52460/pathogens-13-00916-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/d4e18e555631/pathogens-13-00916-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/319cb0b19369/pathogens-13-00916-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/11ae72d79633/pathogens-13-00916-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/c35ae022bac4/pathogens-13-00916-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/8ca590a6d3b7/pathogens-13-00916-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/b9101057091c/pathogens-13-00916-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/5fe713fbca59/pathogens-13-00916-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/3f46f8836199/pathogens-13-00916-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/1a7ad924c9ad/pathogens-13-00916-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/e1c103b52460/pathogens-13-00916-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/d4e18e555631/pathogens-13-00916-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/319cb0b19369/pathogens-13-00916-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/11ae72d79633/pathogens-13-00916-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/c35ae022bac4/pathogens-13-00916-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d317/11509883/8ca590a6d3b7/pathogens-13-00916-g010.jpg

相似文献

[1]
Immunoinformatics Design of a Multiepitope Vaccine (MEV) Targeting : A Novel Computational Approach.

Pathogens. 2024-10-21

[2]
Design and characterization of a multi-epitope vaccine targeting using immunoinformatics approach.

J Biomol Struct Dyn. 2024-8

[3]
Designing a broad-spectrum multi-epitope subunit vaccine against leptospirosis using immunoinformatics and structural approaches.

Front Immunol. 2025-1-28

[4]
Development of a multi-epitope vaccine against Acinetobacter baumannii: A comprehensive approach to combating antimicrobial resistance.

PLoS One. 2025-3-10

[5]
Prioritization of potential vaccine candidates and designing a multiepitope-based subunit vaccine against multidrug-resistant Salmonella Typhi str. CT18: A subtractive proteomics and immunoinformatics approach.

Microb Pathog. 2021-10

[6]
Immunoinformatics design of a novel multiepitope vaccine candidate against non-typhoidal salmonellosis caused by Salmonella Kentucky using outer membrane proteins A, C, and F.

PLoS One. 2025-1-10

[7]
In silico design of a broad-spectrum multiepitope vaccine against influenza virus.

Int J Biol Macromol. 2024-1

[8]
Design of a novel multi-epitope vaccine candidate against using structural and nonstructural proteins: an immunoinformatics study.

J Biomol Struct Dyn. 2024-5

[9]
Designing and immunomolecular analysis of a new broad-spectrum multiepitope vaccine against divergent human papillomavirus types.

PLoS One. 2024-12-2

[10]
Immunoinformatics approach for designing a multiepitope subunit vaccine against porcine epidemic diarrhea virus genotype IIA spike protein.

Open Vet J. 2024-5

引用本文的文献

[1]
Computational design of a glycosylated multi-epitope vaccine against HAsV-1 and HAsV-2 astrovirus for acute gastroenteritis.

Sci Rep. 2025-4-22

[2]
Targeted antimicrobial self-assembly peptide hydrogel with in situ bio-mimic remineralization for caries management.

Bioact Mater. 2024-10-30

本文引用的文献

[1]
Three-dimensional cell culture: Future scope in cancer vaccine development.

Drug Discov Today. 2024-9

[2]
Vaccine delivery systems and administration routes: Advanced biotechnological techniques to improve the immunization efficacy.

Vaccine X. 2024-5-24

[3]
The oral microbiome and oral and upper gastrointestinal diseases.

J Oral Microbiol. 2024-6-3

[4]
The Evolving Microbiome of Dental Caries.

Microorganisms. 2024-1-7

[5]
The Promising Potential of Reverse Vaccinology-Based Next-Generation Vaccine Development over Conventional Vaccines against Antibiotic-Resistant Bacteria.

Vaccines (Basel). 2023-7-20

[6]
Development of a Universal Multi-Epitope Vaccine Candidate against Infections Using Immunoinformatics Approaches.

Vet Sci. 2023-5-31

[7]
TNFepitope: A webserver for the prediction of TNF-α inducing epitopes.

Comput Biol Med. 2023-6

[8]
An immunoinformatics and structural vaccinology study to design a multi-epitope vaccine against Staphylococcus aureus infection.

J Mol Recognit. 2023-4

[9]
Immunoinformatics design of B and T-cell epitope-based SARS-CoV-2 peptide vaccination.

Front Immunol. 2022

[10]
The pH-responsive zeolitic imidazolate framework nanoparticle as a promising immune-enhancing adjuvant for anti-caries vaccine.

J Dent. 2023-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索