Suppr超能文献

优化氧化物负载铜上 CO2 加氢制甲醇关键中间体的结合能。

Optimizing Binding Energies of Key Intermediates for CO2 Hydrogenation to Methanol over Oxide-Supported Copper.

机构信息

Chemistry Department, Brookhaven National Laboratory , Upton, New York 11973, United States.

Department of Chemical Engineering, Tsinghua University , Beijing 100084, China.

出版信息

J Am Chem Soc. 2016 Sep 28;138(38):12440-50. doi: 10.1021/jacs.6b05791. Epub 2016 Sep 14.

Abstract

Rational optimization of catalytic performance has been one of the major challenges in catalysis. Here we report a bottom-up study on the ability of TiO2 and ZrO2 to optimize the CO2 conversion to methanol on Cu, using combined density functional theory (DFT) calculations, kinetic Monte Carlo (KMC) simulations, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements, and steady-state flow reactor tests. The theoretical results from DFT and KMC agree with in situ DRIFTS measurements, showing that both TiO2 and ZrO2 help to promote methanol synthesis on Cu via carboxyl intermediates and the reverse water-gas-shift (RWGS) pathway; the formate intermediates, on the other hand, likely act as a spectator eventually. The origin of the superior promoting effect of ZrO2 is associated with the fine-tuning capability of reduced Zr(3+) at the interface, being able to bind the key reaction intermediates, e.g. *CO2, *CO, *HCO, and *H2CO, moderately to facilitate methanol formation. This study demonstrates the importance of synergy between theory and experiments to elucidate the complex reaction mechanisms of CO2 hydrogenation for the realization of a better catalyst by design.

摘要

理性优化催化性能一直是催化领域的主要挑战之一。在这里,我们报告了一项自下而上的研究,即使用密度泛函理论(DFT)计算、动力学蒙特卡罗(KMC)模拟、原位漫反射红外傅里叶变换光谱(DRIFTS)测量和稳态流动反应器测试,研究 TiO2 和 ZrO2 优化 Cu 上 CO2 转化为甲醇的能力。DFT 和 KMC 的理论结果与原位 DRIFTS 测量结果一致,表明 TiO2 和 ZrO2 均有助于通过羧酸中间体和逆水气变换(RWGS)途径促进甲醇在 Cu 上的合成;而甲酸盐中间体可能最终作为旁观者。ZrO2 优越促进效果的起源与还原态 Zr(3+)在界面上的微调能力有关,它能够适度结合关键反应中间体,如 *CO2、*CO、*HCO 和 *H2CO,以促进甲醇的形成。本研究表明,理论和实验之间的协同作用对于阐明 CO2 加氢的复杂反应机制至关重要,这对于通过设计实现更好的催化剂具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验