Phongprueksathat Nat, Ting Kah Wei, Mine Shinya, Jing Yuan, Toyoshima Ryo, Kondoh Hiroshi, Shimizu Ken-Ichi, Toyao Takashi, Urakawa Atsushi
Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, Netherlands.
Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan.
ACS Catal. 2023 Aug 1;13(16):10734-10750. doi: 10.1021/acscatal.3c01599. eCollection 2023 Aug 18.
Low temperature and high pressure are thermodynamically more favorable conditions to achieve high conversion and high methanol selectivity in CO hydrogenation. However, low-temperature activity is generally very poor due to the sluggish kinetics, and thus, designing highly selective catalysts active below 200 °C is a great challenge in CO-to-methanol conversion. Recently, Re/TiO has been reported as a promising catalyst. We show that Re/TiO is indeed more active in continuous and high-pressure (56 and 331 bar) operations at 125-200 °C compared to an industrial Cu/ZnO/AlO catalyst, which suffers from the formation of methyl formate and its decomposition to carbon monoxide. At lower temperatures, precise understanding and control over the active surface intermediates are crucial to boosting conversion kinetics. This work aims at elucidating the nature of active sites and active species by means of X-ray absorption spectroscopy, Raman spectroscopy, ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Transient DRIFTS studies uncover the activation of CO to form active formate intermediates leading to methanol formation and also active rhenium carbonyl intermediates leading to methane over cationic Re single atoms characterized by rhenium tricarbonyl complexes. The transient techniques enable us to differentiate the active species from the spectator one on TiO support, such as less reactive formate originating from spillover and methoxy from methanol adsorption. The AP-XPS supports the fact that metallic Re species act as H activators, leading to H-spillover and importantly to hydrogenation of the active formate intermediate present over cationic Re species. The origin of the unique reactivity of Re/TiO was suggested as the coexistence of cationic highly dispersed Re including single atoms, driving the formation of monodentate formate, and metallic Re clusters in the vicinity, activating the hydrogenation of the formate to methanol.
在CO加氢反应中,低温高压在热力学上更有利于实现高转化率和高甲醇选择性。然而,由于动力学缓慢,低温活性通常很差,因此,设计在200℃以下具有高选择性的活性催化剂是CO制甲醇转化过程中的一大挑战。最近,Re/TiO被报道为一种有前景的催化剂。我们表明,与工业Cu/ZnO/Al₂O₃催化剂相比,Re/TiO在125 - 200℃的连续高压(56和331 bar)操作中确实更具活性,工业Cu/ZnO/Al₂O₃催化剂会生成甲酸甲酯并分解为一氧化碳。在较低温度下,精确理解和控制活性表面中间体对于提高转化动力学至关重要。这项工作旨在通过X射线吸收光谱、拉曼光谱、常压X射线光电子能谱(AP-XPS)和漫反射红外傅里叶变换光谱(DRIFTS)来阐明活性位点和活性物种的性质。瞬态DRIFTS研究揭示了CO的活化形成活性甲酸酯中间体导致甲醇生成,以及活性铼羰基中间体导致甲烷生成,这些中间体以三羰基铼配合物为特征存在于阳离子Re单原子上。瞬态技术使我们能够区分TiO载体上的活性物种和旁观者物种,例如源自溢流的反应性较低的甲酸酯和甲醇吸附产生的甲氧基。AP-XPS支持了金属Re物种作为H活化剂的事实,导致H溢流,重要的是导致存在于阳离子Re物种上的活性甲酸酯中间体氢化。Re/TiO独特反应性的起源被认为是阳离子高度分散的Re(包括单原子)的共存,驱动单齿甲酸酯的形成,以及附近的金属Re簇,活化甲酸酯氢化为甲醇。