Grasso Michael, Estrada Michelle A, Ventocilla Christian, Samanta Minu, Maksimoska Jasna, Villanueva Jessie, Winkler Jeffrey D, Marmorstein Ronen
Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania , 421 Curie Blvd., Philadelphia, Pennsylvania 19104, United States.
Department of Chemistry, University of Pennsylvania , 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States.
ACS Chem Biol. 2016 Oct 21;11(10):2876-2888. doi: 10.1021/acschembio.6b00529. Epub 2016 Sep 6.
The BRAF kinase, within the mitogen activated protein kinase (MAPK) signaling pathway, harbors activating mutations in about half of melanomas and to a significant extent in many other cancers. A single valine to glutamic acid substitution at residue 600 (BRAF) accounts for about 90% of these activating mutations. While BRAF-selective small molecule inhibitors, such as debrafenib and vemurafenib, have shown therapeutic benefit, almost all patients develop resistance. Resistance often arises through reactivation of the MAPK pathway, typically through mutation of upstream RAS, downstream MEK, or splicing variants. RAF kinases signal as homo- and heterodimers, and another complication associated with small molecule BRAF inhibition is drug-induced allosteric activation of a wild-type RAF subunit (BRAF or CRAF) of the kinase dimer, a process called "transactivation" or "paradoxical activation." Here, we used BRAF and vemurafenib as a model system to develop chemically linked kinase inhibitors to lock RAF dimers in an inactive conformation that cannot undergo transactivation. This structure-based design effort resulted in the development of Vem-BisAmide-2, a compound containing two vemurafenib molecules connected by a bis amide linker. We show that Vem-BisAmide-2 has comparable inhibitory potency as vemurafenib to BRAF both in vitro and in cells but promotes an inactive dimeric BRAF conformation unable to undergo transactivation. The crystal structure of a BRAF/Vem-BisAmide-2 complex and associated biochemical studies reveal the molecular basis for how Vem-BisAmide-2 mediates selectivity for an inactive over an active dimeric BRAF conformation. These studies have implications for targeting BRAF/RAF heterodimers and other kinase dimers for therapy.
在丝裂原活化蛋白激酶(MAPK)信号通路中,BRAF激酶在大约一半的黑色素瘤中存在激活突变,在许多其他癌症中也有相当比例的激活突变。BRAF第600位残基由缬氨酸突变为谷氨酸的单一突变约占这些激活突变的90%。虽然BRAF选择性小分子抑制剂,如达拉非尼和维莫非尼,已显示出治疗效果,但几乎所有患者都会产生耐药性。耐药性通常通过MAPK通路的重新激活产生,通常是通过上游RAS、下游MEK或剪接变体的突变。RAF激酶以同二聚体和异二聚体形式发挥信号传导作用,与小分子BRAF抑制相关的另一个复杂问题是药物诱导激酶二聚体的野生型RAF亚基(BRAF或CRAF)发生变构激活,这一过程称为“反式激活”或“反常激活”。在此,我们以BRAF和维莫非尼为模型系统,开发化学连接的激酶抑制剂,将RAF二聚体锁定在无法进行反式激活的无活性构象中。基于结构的设计工作产生了Vem - BisAmide - 2,这是一种含有两个通过双酰胺连接子连接的维莫非尼分子的化合物。我们表明,Vem - BisAmide - 2在体外和细胞内对BRAF的抑制效力与维莫非尼相当,但能促进无活性的二聚体BRAF构象,使其无法进行反式激活。BRAF/Vem - BisAmide - 2复合物的晶体结构及相关生化研究揭示了Vem - BisAmide - 2介导对无活性二聚体BRAF构象而非活性二聚体BRAF构象具有选择性的分子基础。这些研究对于靶向BRAF/RAF异二聚体和其他激酶二聚体进行治疗具有重要意义。