Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA.
Nat Microbiol. 2016 Jan 11;1:15005. doi: 10.1038/nmicrobiol.2015.5.
Bacteria use a chemical communication process called quorum sensing (QS) to control collective behaviours such as pathogenesis and biofilm formation(1,2). QS relies on the production, release and group-wide detection of signal molecules called autoinducers. To date, studies of bacterial pathogenesis in well-mixed cultures have revealed virulence factors and the regulatory circuits controlling them, including the overarching role of QS(3). Although flow is ubiquitous to nearly all living systems(4), much less explored is how QS influences pathogenic traits in scenarios that mimic host environments, for example, under fluid flow and in complex geometries. Previous studies(5-7) have shown that sufficiently strong flow represses QS. Nonetheless, it is not known how QS functions under constant or intermittent flow, how it varies within biofilms or as a function of position along a confined flow, or how surface topography (grooves, crevices, pores) influence QS-mediated communication. We explore these questions using two common pathogens, Staphylococcus aureus and Vibrio cholerae. We identify conditions where flow represses QS and other conditions where QS is activated despite flow, including characterizing geometric and topographic features that influence the QS response. Our studies highlight that, under flow, genetically identical cells do not exhibit phenotypic uniformity with respect to QS in space and time, leading to complex patterns of pathogenesis and colonization. Understanding the ramifications of spatially and temporally non-uniform QS responses in realistic environments will be crucial for successful deployment of synthetic pro- and anti-QS strategies.
细菌利用一种称为群体感应 (QS) 的化学通讯过程来控制集体行为,如发病机制和生物膜形成 (1,2)。QS 依赖于信号分子的产生、释放和全群体检测,这些信号分子称为自诱导物。迄今为止,对充分混合培养物中细菌发病机制的研究揭示了毒力因子和控制它们的调节回路,包括 QS 的总体作用 (3)。尽管流动普遍存在于几乎所有的生命系统中 (4),但人们对 QS 如何在模拟宿主环境的情况下影响致病特征的研究却少得多,例如在流动和复杂几何形状下。以前的研究 (5-7) 表明,足够强的流动会抑制 QS。然而,目前尚不清楚 QS 在恒流或间歇流动下如何发挥作用,它在生物膜内如何变化,或者作为沿受限流动的位置的函数如何变化,或者表面形貌 (凹槽、裂缝、孔) 如何影响 QS 介导的通讯。我们使用两种常见的病原体,金黄色葡萄球菌和霍乱弧菌来研究这些问题。我们确定了流动抑制 QS 的条件和流动激活 QS 的条件,包括表征影响 QS 反应的几何和地形特征。我们的研究表明,在流动下,就 QS 而言,遗传上相同的细胞在空间和时间上没有表现出表型均匀性,导致发病机制和定植的复杂模式。了解在现实环境中空间和时间上非均匀 QS 反应的后果对于成功部署合成促 QS 和抗 QS 策略将是至关重要的。