Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America.
Program in Molecular Microbiology, Tufts University, Graduate School of Biomedical Sciences, Boston, Massachusetts, United States of America.
PLoS Pathog. 2020 Feb 14;16(2):e1008313. doi: 10.1371/journal.ppat.1008313. eCollection 2020 Feb.
Many bacteria use quorum sensing (QS) to regulate virulence factor production in response to changes in population density. QS is mediated through the production, secretion, and detection of signaling molecules called autoinducers (AIs) to modulate population-wide behavioral changes. Four histidine kinases, LuxPQ, CqsS, CqsR and VpsS, have been identified in Vibrio cholerae as QS receptors to activate virulence gene expression at low cell density. Detection of AIs by these receptors leads to virulence gene repression at high cell density. The redundancy among these receptors is puzzling since any one of the four receptors is sufficient to support colonization of V. cholerae in the host small intestine. It is believed that one of the functions of such circuit architecture is to prevent interference on any single QS receptor. However, it is unclear what natural molecules can interfere V. cholerae QS and in what environment interference is detrimental. We show here mutants expressing only CqsR without the other three QS receptors are defective in colonizing the host large intestine. We identified ethanolamine, a common intestinal metabolite that can function as a chemical source of QS interference. Ethanolamine specifically interacts with the ligand-binding CACHE domain of CqsR and induces a premature QS response in V. cholerae mutants expressing only CqsR without the other three QS receptors. The effect of ethanolamine on QS gene expression and host colonization is abolished by mutations that disrupt CqsR signal sensing. V. cholerae defective in producing ethanolamine is still proficient in QS, therefore, ethanolamine functions only as an external cue for CqsR. Our findings suggest the inhibitory effect of ethanolamine on CqsR could be a possible source of QS interference but is masked by the presence of the other parallel QS pathways, allowing V. cholerae to robustly colonize the host.
许多细菌利用群体感应(QS)来调节毒力因子的产生,以响应种群密度的变化。QS 是通过产生、分泌和检测称为自动诱导物(AIs)的信号分子来调节群体行为变化的。在霍乱弧菌中,已经鉴定出四种组氨酸激酶,即 LuxPQ、CqsS、CqsR 和 VpsS,作为 QS 受体,在低细胞密度下激活毒力基因表达。这些受体对 AIs 的检测导致高细胞密度时毒力基因的抑制。这些受体之间的冗余令人困惑,因为这四个受体中的任何一个都足以支持霍乱弧菌在宿主小肠中的定植。据信,这种电路结构的功能之一是防止对任何单个 QS 受体的干扰。然而,目前尚不清楚哪些天然分子可以干扰霍乱弧菌的 QS,以及在什么环境下干扰是有害的。我们在这里表明,只表达 CqsR 而不表达其他三个 QS 受体的突变体在定植宿主大肠方面存在缺陷。我们确定了乙醇胺,一种常见的肠道代谢物,可以作为 QS 干扰的化学来源。乙醇胺特异性地与仅表达 CqsR 的 V. cholerae 突变体的配体结合 CACHE 结构域相互作用,并诱导没有其他三个 QS 受体的 CqsR 表达。突变破坏了 CqsR 信号感应,从而消除了乙醇胺对 QS 基因表达和宿主定植的影响。不能产生乙醇胺的霍乱弧菌仍然能够进行 QS,因此,乙醇胺仅作为 CqsR 的外部信号。我们的研究结果表明,乙醇胺对 CqsR 的抑制作用可能是 QS 干扰的一个潜在来源,但被其他平行的 QS 途径的存在所掩盖,从而使霍乱弧菌能够有效地定植宿主。