Ripstein Z A, Rubinstein J L
Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
Methods Enzymol. 2016;579:103-24. doi: 10.1016/bs.mie.2016.04.009. Epub 2016 Jun 1.
Direct detector device (DDD) cameras dramatically enhance the capabilities of electron cryomicroscopy (cryo-EM) due to their improved detective quantum efficiency (DQE) relative to other detectors. DDDs use semiconductor technology that allows micrographs to be recorded as movies rather than integrated individual exposures. Movies from DDDs improve cryo-EM in another, more surprising, way. DDD movies revealed beam-induced specimen movement as a major source of image degradation and provide a way to partially correct the problem by aligning frames or regions of frames to account for this specimen movement. In this chapter, we use a self-consistent mathematical notation to explain, compare, and contrast several of the most popular existing algorithms for computationally correcting specimen movement in DDD movies. We conclude by discussing future developments in algorithms for processing DDD movies that would extend the capabilities of cryo-EM even further.
直接探测器设备(DDD)相机相对于其他探测器具有更高的探测量子效率(DQE),从而极大地提升了电子冷冻显微镜(cryo-EM)的性能。DDD采用半导体技术,能够将显微图像记录为电影形式,而非整合的单个曝光图像。DDD相机所拍摄的电影以另一种更为惊人的方式改进了冷冻电镜技术。DDD电影揭示了电子束诱导的样品移动是图像退化的主要根源,并提供了一种通过对齐帧或帧区域来部分校正该问题的方法,以应对这种样品移动。在本章中,我们使用一种自洽的数学符号来解释、比较和对比几种最流行的现有算法——这些算法用于在计算上校正DDD电影中的样品移动。我们通过讨论处理DDD电影的算法的未来发展来结束本章内容,这些发展将进一步扩展冷冻电镜技术的能力。