Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Nat Commun. 2016 Aug 30;7:12559. doi: 10.1038/ncomms12559.
Fluids that contain ordered nanostructures with periodic distances in the visible-wavelength range, anomalously exhibit structural colours that can be rapidly modulated by external stimuli. Indeed, some fish can dynamically change colour by modulating the periodic distance of crystalline guanine sheets cofacially oriented in their fluid cytoplasm. Here we report that a dilute aqueous colloidal dispersion of negatively charged titanate nanosheets exhibits structural colours. In this 'photonic water', the nanosheets spontaneously adopt a cofacial geometry with an ultralong periodic distance of up to 675 nm due to a strong electrostatic repulsion. Consequently, the photonic water can even reflect near-infrared light up to 1,750 nm. The structural colour becomes more vivid in a magnetic flux that induces monodomain structural ordering of the colloidal dispersion. The reflective colour of the photonic water can be modulated over the entire visible region in response to appropriate physical or chemical stimuli.
具有可见光波长范围内有序纳米结构的流体,表现出异常的结构色,可通过外部刺激快速调制。事实上,一些鱼类可以通过调节其细胞质中同向取向的结晶鸟嘌呤片的周期性距离来动态改变颜色。在这里,我们报告了带负电荷的钛酸盐纳米片的稀水胶体分散体表现出结构色。在这种“光子水”中,由于强烈的静电排斥,纳米片自发地采用共面几何形状,具有长达 675nm 的超长周期性距离。因此,光子水甚至可以反射近红外光,波长可达 1750nm。在磁场中,胶体分散体的单畴结构有序排列,使结构色更加鲜艳。光子水的反射颜色可以通过适当的物理或化学刺激在整个可见光区域内进行调制。