Suppr超能文献

创伤登记处经济状况评估:一种用于在时间紧迫的低资源环境中生成基于人群聚类的特定经济状况模型的新算法。

Assessment of economic status in trauma registries: A new algorithm for generating population-specific clustering-based models of economic status for time-constrained low-resource settings.

作者信息

Eyler Lauren, Hubbard Alan, Juillard Catherine

机构信息

University of California, San Francisco, Center for Global Surgical Studies, San Francisco General Hospital, Box 0807, San Francisco, CA 94143-0807, USA.

University of California, Berkeley, School of Public Health, Division of Biostatistics, 50 University Hall #7360, Berkeley, CA 94720-7360, USA.

出版信息

Int J Med Inform. 2016 Oct;94:49-58. doi: 10.1016/j.ijmedinf.2016.05.004. Epub 2016 Jun 29.

Abstract

OBJECTIVES

Low and middle-income countries (LMICs) and the world's poor bear a disproportionate share of the global burden of injury. Data regarding disparities in injury are vital to inform injury prevention and trauma systems strengthening interventions targeted towards vulnerable populations, but are limited in LMICs. We aim to facilitate injury disparities research by generating a standardized methodology for assessing economic status in resource-limited country trauma registries where complex metrics such as income, expenditures, and wealth index are infeasible to assess.

METHODS

To address this need, we developed a cluster analysis-based algorithm for generating simple population-specific metrics of economic status using nationally representative Demographic and Health Surveys (DHS) household assets data. For a limited number of variables, g, our algorithm performs weighted k-medoids clustering of the population using all combinations of g asset variables and selects the combination of variables and number of clusters that maximize average silhouette width (ASW).

RESULTS

In simulated datasets containing both randomly distributed variables and "true" population clusters defined by correlated categorical variables, the algorithm selected the correct variable combination and appropriate cluster numbers unless variable correlation was very weak. When used with 2011 Cameroonian DHS data, our algorithm identified twenty economic clusters with ASW 0.80, indicating well-defined population clusters.

CONCLUSIONS

This economic model for assessing health disparities will be used in the new Cameroonian six-hospital centralized trauma registry. By describing our standardized methodology and algorithm for generating economic clustering models, we aim to facilitate measurement of health disparities in other trauma registries in resource-limited countries.

摘要

目标

低收入和中等收入国家(LMICs)以及世界贫困人口承受着全球不成比例的伤害负担。有关伤害差异的数据对于为针对弱势群体的伤害预防和创伤系统强化干预措施提供信息至关重要,但在低收入和中等收入国家却很有限。我们旨在通过生成一种标准化方法来促进伤害差异研究,该方法用于评估资源有限国家创伤登记处的经济状况,在这些登记处,诸如收入、支出和财富指数等复杂指标难以评估。

方法

为满足这一需求,我们开发了一种基于聚类分析的算法,使用具有全国代表性的人口与健康调查(DHS)家庭资产数据生成简单的特定人群经济状况指标。对于有限数量的变量g,我们的算法使用g个资产变量的所有组合对人群进行加权k-中心点聚类,并选择能使平均轮廓宽度(ASW)最大化的变量组合和聚类数量。

结果

在包含随机分布变量和由相关分类变量定义的“真实”人群聚类的模拟数据集中,除非变量相关性非常弱,该算法能选择正确的变量组合和合适的聚类数量。当与2011年喀麦隆人口与健康调查数据一起使用时,我们的算法识别出了20个经济聚类,平均轮廓宽度为0.80,表明人群聚类定义明确。

结论

这种用于评估健康差异的经济模型将用于新的喀麦隆六家医院集中创伤登记处。通过描述我们用于生成经济聚类模型的标准化方法和算法,我们旨在促进对资源有限国家其他创伤登记处健康差异的测量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验