Suppr超能文献

无需出行调查的城市机动性时间地理建模框架。

The TimeGeo modeling framework for urban motility without travel surveys.

作者信息

Jiang Shan, Yang Yingxiang, Gupta Siddharth, Veneziano Daniele, Athavale Shounak, González Marta C

机构信息

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;

Research & Innovation Center, Ford Motor Company, Palo Alto, CA 9304;

出版信息

Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5370-8. doi: 10.1073/pnas.1524261113. Epub 2016 Aug 29.

Abstract

Well-established fine-scale urban mobility models today depend on detailed but cumbersome and expensive travel surveys for their calibration. Not much is known, however, about the set of mechanisms needed to generate complete mobility profiles if only using passive datasets with mostly sparse traces of individuals. In this study, we present a mechanistic modeling framework (TimeGeo) that effectively generates urban mobility patterns with resolution of 10 min and hundreds of meters. It ties together the inference of home and work activity locations from data, with the modeling of flexible activities (e.g., other) in space and time. The temporal choices are captured by only three features: the weekly home-based tour number, the dwell rate, and the burst rate. These combined generate for each individual: (i) stay duration of activities, (ii) number of visited locations per day, and (iii) daily mobility networks. These parameters capture how an individual deviates from the circadian rhythm of the population, and generate the wide spectrum of empirically observed mobility behaviors. The spatial choices of visited locations are modeled by a rank-based exploration and preferential return (r-EPR) mechanism that incorporates space in the EPR model. Finally, we show that a hierarchical multiplicative cascade method can measure the interaction between land use and generation of trips. In this way, urban structure is directly related to the observed distance of travels. This framework allows us to fully embrace the massive amount of individual data generated by information and communication technologies (ICTs) worldwide to comprehensively model urban mobility without travel surveys.

摘要

当今成熟的精细尺度城市出行模型依赖于详细但繁琐且昂贵的出行调查来进行校准。然而,如果仅使用大多是个体稀疏轨迹的被动数据集,对于生成完整出行概况所需的一套机制,我们了解得并不多。在本研究中,我们提出了一个机制建模框架(时间地理学),它能有效生成分辨率为10分钟和数百米的城市出行模式。它将从数据中推断家庭和工作活动地点与在空间和时间上对灵活活动(例如其他活动)的建模结合在一起。时间选择仅由三个特征来捕捉:每周基于家的出行次数、停留率和突发率。这些因素综合起来为每个个体生成:(i)活动的停留持续时间,(ii)每天访问的地点数量,以及(iii)每日出行网络。这些参数捕捉了个体如何偏离人群的昼夜节律,并生成了从经验上观察到的广泛出行行为。访问地点的空间选择通过一种基于排名的探索和优先返回(r-EPR)机制进行建模,该机制将空间纳入EPR模型。最后,我们表明一种分层乘法级联方法可以衡量土地利用与出行生成之间的相互作用。通过这种方式,城市结构与观察到的出行距离直接相关。这个框架使我们能够充分利用全球信息通信技术(ICT)生成的大量个体数据,在不进行出行调查的情况下全面建模城市出行。

相似文献

1
The TimeGeo modeling framework for urban motility without travel surveys.
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5370-8. doi: 10.1073/pnas.1524261113. Epub 2016 Aug 29.
4
Unravelling daily human mobility motifs.
J R Soc Interface. 2013 May 8;10(84):20130246. doi: 10.1098/rsif.2013.0246. Print 2013 Jul 6.
5
Understanding individual human mobility patterns.
Nature. 2008 Jun 5;453(7196):779-82. doi: 10.1038/nature06958.
6
Research on Human Travel Correlation for Urban Transport Planning Based on Multisource Data.
Sensors (Basel). 2020 Dec 30;21(1):195. doi: 10.3390/s21010195.
7
Practical geospatial and sociodemographic predictors of human mobility.
Sci Rep. 2021 Jul 28;11(1):15389. doi: 10.1038/s41598-021-94683-7.
8
Mesoscopic structure and social aspects of human mobility.
PLoS One. 2012;7(5):e37676. doi: 10.1371/journal.pone.0037676. Epub 2012 May 31.
9
The duration of travel impacts the spatial dynamics of infectious diseases.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22572-22579. doi: 10.1073/pnas.1922663117. Epub 2020 Aug 24.
10
Approaching the limit of predictability in human mobility.
Sci Rep. 2013 Oct 11;3:2923. doi: 10.1038/srep02923.

引用本文的文献

1
Job loss disrupts individuals' mobility and their exploratory patterns.
iScience. 2025 Jun 13;28(7):112892. doi: 10.1016/j.isci.2025.112892. eCollection 2025 Jul 18.
2
Dataset for visitations of public green spaces in Shanghai, China.
Sci Data. 2025 Jul 18;12(1):1260. doi: 10.1038/s41597-025-05581-w.
4
Learning the complexity of urban mobility with deep generative network.
PNAS Nexus. 2025 May 6;4(5):pgaf081. doi: 10.1093/pnasnexus/pgaf081. eCollection 2025 May.
5
Hidden high-risk states identification from routine urban traffic.
PNAS Nexus. 2025 Mar 3;4(3):pgaf075. doi: 10.1093/pnasnexus/pgaf075. eCollection 2025 Mar.
6
Generating Realistic and Representative Trajectories with Mobility Behavior Clustering.
Proc ACM SIGSPATIAL Int Conf Adv Inf. 2023 Nov;2023. doi: 10.1145/3589132.3625657. Epub 2023 Dec 22.
7
Dynamic predictability and activity-location contexts in human mobility.
R Soc Open Sci. 2024 Sep 4;11(9):240115. doi: 10.1098/rsos.240115. eCollection 2024 Sep.
8
Understanding congestion propagation by combining percolation theory with the macroscopic fundamental diagram.
Commun Phys. 2023;6(1):26. doi: 10.1038/s42005-023-01144-w. Epub 2023 Feb 1.
9
COVID-19 is linked to changes in the time-space dimension of human mobility.
Nat Hum Behav. 2023 Oct;7(10):1729-1739. doi: 10.1038/s41562-023-01660-3. Epub 2023 Jul 27.

本文引用的文献

1
Returners and explorers dichotomy in human mobility.
Nat Commun. 2015 Sep 8;6:8166. doi: 10.1038/ncomms9166.
2
Coupling human mobility and social ties.
J R Soc Interface. 2015 Apr 6;12(105). doi: 10.1098/rsif.2014.1128.
3
Theory and data for simulating fine-scale human movement in an urban environment.
J R Soc Interface. 2014 Oct 6;11(99). doi: 10.1098/rsif.2014.0642.
5
Unravelling daily human mobility motifs.
J R Soc Interface. 2013 May 8;10(84):20130246. doi: 10.1098/rsif.2013.0246. Print 2013 Jul 6.
6
A tale of many cities: universal patterns in human urban mobility.
PLoS One. 2012;7(5):e37027. doi: 10.1371/journal.pone.0037027. Epub 2012 May 29.
7
Universal features of correlated bursty behaviour.
Sci Rep. 2012;2:397. doi: 10.1038/srep00397. Epub 2012 May 4.
8
A universal model for mobility and migration patterns.
Nature. 2012 Feb 26;484(7392):96-100. doi: 10.1038/nature10856.
9
Limits of predictability in human mobility.
Science. 2010 Feb 19;327(5968):1018-21. doi: 10.1126/science.1177170.
10
Multiscale mobility networks and the spatial spreading of infectious diseases.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21484-9. doi: 10.1073/pnas.0906910106. Epub 2009 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验