Suppr超能文献

多尺度移动性网络与传染病的空间传播。

Multiscale mobility networks and the spatial spreading of infectious diseases.

机构信息

Center for Complex Networks and Systems Research, School of Informatics and Computing, Indiana University, Bloomington, IN 47408, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21484-9. doi: 10.1073/pnas.0906910106. Epub 2009 Dec 14.

Abstract

Among the realistic ingredients to be considered in the computational modeling of infectious diseases, human mobility represents a crucial challenge both on the theoretical side and in view of the limited availability of empirical data. To study the interplay between short-scale commuting flows and long-range airline traffic in shaping the spatiotemporal pattern of a global epidemic we (i) analyze mobility data from 29 countries around the world and find a gravity model able to provide a global description of commuting patterns up to 300 kms and (ii) integrate in a worldwide-structured metapopulation epidemic model a timescale-separation technique for evaluating the force of infection due to multiscale mobility processes in the disease dynamics. Commuting flows are found, on average, to be one order of magnitude larger than airline flows. However, their introduction into the worldwide model shows that the large-scale pattern of the simulated epidemic exhibits only small variations with respect to the baseline case where only airline traffic is considered. The presence of short-range mobility increases, however, the synchronization of subpopulations in close proximity and affects the epidemic behavior at the periphery of the airline transportation infrastructure. The present approach outlines the possibility for the definition of layered computational approaches where different modeling assumptions and granularities can be used consistently in a unifying multiscale framework.

摘要

在传染病的计算建模中,需要考虑许多现实因素,其中人类流动性是一个具有挑战性的问题,无论是在理论方面还是在有限的经验数据可用性方面都是如此。为了研究短期通勤流动和长途航空交通在塑造全球流行病的时空模式方面的相互作用,我们(i)分析了来自全球 29 个国家的流动数据,并找到了一个能够提供全球范围内通勤模式描述的重力模型,其范围可达 300 公里;(ii)在全球结构的元胞自动机传染病模型中,我们整合了一种时间尺度分离技术,用于评估多尺度流动过程在疾病动力学中对感染强度的影响。平均而言,通勤流动的规模比航空流量大一个数量级。然而,将它们引入全球模型表明,模拟流行病的大尺度模式相对于仅考虑航空交通的基线案例只有很小的变化。然而,短距离流动性的存在增加了近距离亚群的同步性,并影响了航空运输基础设施周边的流行病行为。本研究方法概述了定义分层计算方法的可能性,在统一的多尺度框架中,可以使用不同的建模假设和粒度来一致地定义这些方法。

相似文献

1
Multiscale mobility networks and the spatial spreading of infectious diseases.多尺度移动性网络与传染病的空间传播。
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21484-9. doi: 10.1073/pnas.0906910106. Epub 2009 Dec 14.
2
On the use of human mobility proxies for modeling epidemics.利用人类移动代理进行传染病建模。
PLoS Comput Biol. 2014 Jul 10;10(7):e1003716. doi: 10.1371/journal.pcbi.1003716. eCollection 2014 Jul.

引用本文的文献

7
Learning the complexity of urban mobility with deep generative network.利用深度生成网络学习城市交通的复杂性。
PNAS Nexus. 2025 May 6;4(5):pgaf081. doi: 10.1093/pnasnexus/pgaf081. eCollection 2025 May.

本文引用的文献

1
Understanding individual human mobility patterns.理解个体的人类移动模式。
Nature. 2008 Jun 5;453(7196):779-82. doi: 10.1038/nature06958.
3
6
The modeling of global epidemics: stochastic dynamics and predictability.全球流行病建模:随机动力学与可预测性
Bull Math Biol. 2006 Nov;68(8):1893-921. doi: 10.1007/s11538-006-9077-9. Epub 2006 Jun 20.
7
Transport in weighted networks: partition into superhighways and roads.加权网络中的传输:划分为超级高速公路和道路。
Phys Rev Lett. 2006 Apr 14;96(14):148702. doi: 10.1103/PhysRevLett.96.148702. Epub 2006 Apr 13.
8
Delaying the international spread of pandemic influenza.延缓大流行性流感的国际传播。
PLoS Med. 2006 Jun;3(6):e212. doi: 10.1371/journal.pmed.0030212. Epub 2006 May 2.
9
Mitigation strategies for pandemic influenza in the United States.美国大流行性流感的缓解策略。
Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5935-40. doi: 10.1073/pnas.0601266103. Epub 2006 Apr 3.
10
Synchrony, waves, and spatial hierarchies in the spread of influenza.流感传播中的同步性、波和空间层次结构。
Science. 2006 Apr 21;312(5772):447-51. doi: 10.1126/science.1125237. Epub 2006 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验