Suppr超能文献

聚酮生物合成中β-分支酶的结构剖析及其与酰基-ACP底物的相互作用。

Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate.

作者信息

Maloney Finn P, Gerwick Lena, Gerwick William H, Sherman David H, Smith Janet L

机构信息

Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109; Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109;

Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093;

出版信息

Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10316-21. doi: 10.1073/pnas.1607210113. Epub 2016 Aug 29.

Abstract

Alkyl branching at the β position of a polyketide intermediate is an important variation on canonical polyketide natural product biosynthesis. The branching enzyme, 3-hydroxy-3-methylglutaryl synthase (HMGS), catalyzes the aldol addition of an acyl donor to a β-keto-polyketide intermediate acceptor. HMGS is highly selective for two specialized acyl carrier proteins (ACPs) that deliver the donor and acceptor substrates. The HMGS from the curacin A biosynthetic pathway (CurD) was examined to establish the basis for ACP selectivity. The donor ACP (CurB) had high affinity for the enzyme (Kd = 0.5 μM) and could not be substituted by the acceptor ACP. High-resolution crystal structures of HMGS alone and in complex with its donor ACP reveal a tight interaction that depends on exquisite surface shape and charge complementarity between the proteins. Selectivity is explained by HMGS binding to an unusual surface cleft on the donor ACP, in a manner that would exclude the acceptor ACP. Within the active site, HMGS discriminates between pre- and postreaction states of the donor ACP. The free phosphopantetheine (Ppant) cofactor of ACP occupies a conserved pocket that excludes the acetyl-Ppant substrate. In comparison with HMG-CoA (CoA) synthase, the homologous enzyme from primary metabolism, HMGS has several differences at the active site entrance, including a flexible-loop insertion, which may account for the specificity of one enzyme for substrates delivered by ACP and the other by CoA.

摘要

聚酮化合物中间体β位的烷基分支是经典聚酮化合物天然产物生物合成中的一种重要变异。分支酶3-羟基-3-甲基戊二酰辅酶A合酶(HMGS)催化酰基供体与β-酮聚酮化合物中间体受体的羟醛加成反应。HMGS对两种负责传递供体和受体底物的特殊酰基载体蛋白(ACP)具有高度选择性。对来自curacin A生物合成途径的HMGS(CurD)进行了研究,以确定ACP选择性的基础。供体ACP(CurB)对该酶具有高亲和力(解离常数Kd = 0.5 μM),且不能被受体ACP替代。单独的HMGS及其与供体ACP复合物的高分辨率晶体结构揭示了一种紧密的相互作用,这种相互作用取决于蛋白质之间精确的表面形状和电荷互补性。选择性是由于HMGS以一种排除受体ACP的方式与供体ACP上一个不寻常的表面裂隙结合。在活性位点内,HMGS区分供体ACP的反应前和反应后状态。ACP的游离磷酸泛酰巯基乙胺(Ppant)辅因子占据一个保守口袋,该口袋排除了乙酰-Ppant底物。与来自初级代谢的同源酶HMG-CoA(CoA)合酶相比,HMGS在活性位点入口处有几个差异,包括一个柔性环插入,这可能解释了一种酶对由ACP传递的底物和另一种由CoA传递的底物的特异性。

相似文献

1
Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate.
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10316-21. doi: 10.1073/pnas.1607210113. Epub 2016 Aug 29.
4
A conserved motif flags acyl carrier proteins for β-branching in polyketide synthesis.
Nat Chem Biol. 2013 Nov;9(11):685-692. doi: 10.1038/nchembio.1342. Epub 2013 Sep 22.
5
Structural basis for selectivity in a highly reducing type II polyketide synthase.
Nat Chem Biol. 2020 Jul;16(7):776-782. doi: 10.1038/s41589-020-0530-0. Epub 2020 May 4.
6
GNAT-like strategy for polyketide chain initiation.
Science. 2007 Nov 9;318(5852):970-4. doi: 10.1126/science.1148790.
8
Probing the phosphopantetheine arm conformations of acyl carrier proteins using vibrational spectroscopy.
J Am Chem Soc. 2014 Aug 13;136(32):11240-3. doi: 10.1021/ja505442h. Epub 2014 Aug 4.
9
Sticky swinging arm dynamics: studies of an acyl carrier protein domain from the mycolactone polyketide synthase.
Biochem J. 2016 Apr 15;473(8):1097-110. doi: 10.1042/BCJ20160041. Epub 2016 Feb 26.

引用本文的文献

2
Divergent Tandem Acyl Carrier Proteins Necessitate In-Series Polyketide Processing in the Leinamycin Family.
Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414165. doi: 10.1002/anie.202414165. Epub 2024 Nov 6.
3
An optimized reverse β-oxidation pathway to produce selected medium-chain fatty acids in Saccharomyces cerevisiae.
Biotechnol Biofuels Bioprod. 2023 Apr 26;16(1):71. doi: 10.1186/s13068-023-02317-z.
4
Decrypting the programming of β-methylation in virginiamycin M biosynthesis.
Nat Commun. 2023 Mar 10;14(1):1327. doi: 10.1038/s41467-023-36974-3.
5
Initiating polyketide biosynthesis by on-line methyl esterification.
Nat Commun. 2021 Jul 23;12(1):4499. doi: 10.1038/s41467-021-24846-7.
6
Development of a Pantetheine Force Field Library for Molecular Modeling.
J Chem Inf Model. 2021 Feb 22;61(2):856-868. doi: 10.1021/acs.jcim.0c01384. Epub 2021 Feb 3.
7
The Sandarazols are Cryptic and Structurally Unique Plasmid-Encoded Toxins from a Rare Myxobacterium*.
Angew Chem Int Ed Engl. 2021 Apr 6;60(15):8081-8088. doi: 10.1002/anie.202014671. Epub 2021 Mar 4.
8
Membrane fluidity adjusts the insertion of the transacylase PlsX to regulate phospholipid biosynthesis in Gram-positive bacteria.
J Biol Chem. 2020 Feb 14;295(7):2136-2147. doi: 10.1074/jbc.RA119.011122. Epub 2019 Dec 3.

本文引用的文献

1
Structure-based analysis of the molecular interactions between acyltransferase and acyl carrier protein in vicenistatin biosynthesis.
Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1802-7. doi: 10.1073/pnas.1520042113. Epub 2016 Feb 1.
2
Genetic engineering of modular PKSs: from combinatorial biosynthesis to synthetic biology.
Nat Prod Rep. 2016 Feb;33(2):203-30. doi: 10.1039/c5np00109a.
3
Structural rearrangements of a polyketide synthase module during its catalytic cycle.
Nature. 2014 Jun 26;510(7506):560-4. doi: 10.1038/nature13409. Epub 2014 Jun 18.
4
Structure of a modular polyketide synthase.
Nature. 2014 Jun 26;510(7506):512-7. doi: 10.1038/nature13423. Epub 2014 Jun 18.
5
Trapping the dynamic acyl carrier protein in fatty acid biosynthesis.
Nature. 2014 Jan 16;505(7483):427-31. doi: 10.1038/nature12810. Epub 2013 Dec 22.
6
Chasing acyl carrier protein through a catalytic cycle of lipid A production.
Nature. 2014 Jan 16;505(7483):422-6. doi: 10.1038/nature12679. Epub 2013 Nov 6.
7
Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis.
Chem Biol. 2013 Nov 21;20(11):1340-51. doi: 10.1016/j.chembiol.2013.09.015. Epub 2013 Oct 31.
8
A conserved motif flags acyl carrier proteins for β-branching in polyketide synthesis.
Nat Chem Biol. 2013 Nov;9(11):685-692. doi: 10.1038/nchembio.1342. Epub 2013 Sep 22.
9
Natural products: a continuing source of novel drug leads.
Biochim Biophys Acta. 2013 Jun;1830(6):3670-95. doi: 10.1016/j.bbagen.2013.02.008. Epub 2013 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验