Lecrux C, Hamel E
Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, Quebec, Canada H3A 2B4
Philos Trans R Soc Lond B Biol Sci. 2016 Oct 5;371(1705). doi: 10.1098/rstb.2015.0350.
Brain imaging techniques that use vascular signals to map changes in neuronal activity, such as blood oxygenation level-dependent functional magnetic resonance imaging, rely on the spatial and temporal coupling between changes in neurophysiology and haemodynamics, known as 'neurovascular coupling (NVC)'. Accordingly, NVC responses, mapped by changes in brain haemodynamics, have been validated for different stimuli under physiological conditions. In the cerebral cortex, the networks of excitatory pyramidal cells and inhibitory interneurons generating the changes in neural activity and the key mediators that signal to the vascular unit have been identified for some incoming afferent pathways. The neural circuits recruited by whisker glutamatergic-, basal forebrain cholinergic- or locus coeruleus noradrenergic pathway stimulation were found to be highly specific and discriminative, particularly when comparing the two modulatory systems to the sensory response. However, it is largely unknown whether or not NVC is still reliable when brain states are altered or in disease conditions. This lack of knowledge is surprising since brain imaging is broadly used in humans and, ultimately, in conditions that deviate from baseline brain function. Using the whisker-to-barrel pathway as a model of NVC, we can interrogate the reliability of NVC under enhanced cholinergic or noradrenergic modulation of cortical circuits that alters brain states.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
利用血管信号来绘制神经元活动变化的脑成像技术,如基于血氧水平依赖的功能磁共振成像,依赖于神经生理学变化与血液动力学变化之间的空间和时间耦合,即“神经血管耦合(NVC)”。因此,通过脑血液动力学变化绘制的NVC反应,已在生理条件下针对不同刺激得到验证。在大脑皮层中,对于一些传入的传入通路,已经确定了产生神经活动变化的兴奋性锥体细胞和抑制性中间神经元网络,以及向血管单元发出信号的关键介质。发现由触须谷氨酸能、基底前脑胆碱能或蓝斑去甲肾上腺素能通路刺激所募集的神经回路具有高度特异性和区分性,特别是在将这两种调节系统与感觉反应进行比较时。然而,当脑状态改变或处于疾病状态时,NVC是否仍然可靠在很大程度上尚不清楚。这种知识的缺乏令人惊讶,因为脑成像在人类中广泛使用,最终在偏离基线脑功能的情况下使用。以触须到桶状通路作为NVC的模型,我们可以研究在改变脑状态的皮层回路增强胆碱能或去甲肾上腺素能调制下NVC的可靠性。
本文是主题为“解读BOLD:认知神经科学与细胞神经科学之间的对话”这一特刊的一部分。