Suppr超能文献

核仁蛋白质组学实验的质谱数据分析

Analysis of Mass Spectrometry Data for Nucleolar Proteomics Experiments.

作者信息

Nicolas Armel, Bensaddek Dalila, Lamond Angus I

机构信息

Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK.

出版信息

Methods Mol Biol. 2016;1455:263-76. doi: 10.1007/978-1-4939-3792-9_21.

Abstract

With recent advances in experiment design, sample preparation, separation and instruments, mass spectrometry (MS)-based quantitative proteomics is becoming increasingly more popular. This has the potential to usher a new revolution in biology, in which the protein complement of cell populations can be described not only with increasing coverage, but also in all of its dimensions with unprecedented precision. Indeed, while earlier proteomics studies aimed solely at identifying as many as possible of the proteins present in the sample, newer, so-called Next Generation Proteomics studies add to this the aim of determining and quantifying the protein variants present in the sample, their mutual associations within complexes, their posttranslational modifications, their variation across the cell-cycle or in response to stimuli or perturbations, and their subcellular distribution. This has the potential to make MS proteomics much more useful for researchers, but will also mean that researchers with no background in MS will increasingly be confronted with the less-than trivial challenges of preparing samples for MS analysis, then processing and interpreting the results. In Chapter 20 , we described a workflow for isolating the protein contents of a specific SILAC-labeled organelle sample (the nucleolus) and processing it into peptides suitable for bottom-up MS analysis. Here, we complete this workflow by describing how to use the freely available MaxQuant software to convert the spectra stored in the Raw files into peptide- and protein-level information. We also briefly describe how to visualize the data using the free R scripting language.

摘要

随着实验设计、样品制备、分离技术和仪器方面的最新进展,基于质谱(MS)的定量蛋白质组学正变得越来越流行。这有可能引发生物学领域的一场新革命,在这场革命中,细胞群体的蛋白质组成不仅能够以越来越高的覆盖率进行描述,而且能够以前所未有的精度在各个维度上进行描述。实际上,早期的蛋白质组学研究仅旨在尽可能多地鉴定样品中存在的蛋白质,而更新的所谓下一代蛋白质组学研究在此基础上增加了确定和量化样品中存在的蛋白质变体、它们在复合物中的相互关联、它们的翻译后修饰、它们在细胞周期中的变化或对刺激或扰动的反应以及它们的亚细胞分布的目标。这有可能使质谱蛋白质组学对研究人员更有用,但也意味着没有质谱背景的研究人员将越来越多地面临为质谱分析制备样品、然后处理和解释结果等并非微不足道的挑战。在第20章中,我们描述了一种用于分离特定SILAC标记细胞器样品(核仁)的蛋白质成分并将其处理成适合自下而上质谱分析的肽段的工作流程。在这里,我们通过描述如何使用免费的MaxQuant软件将存储在原始文件中的光谱转换为肽段和蛋白质水平的信息来完成此工作流程。我们还简要描述了如何使用免费的R脚本语言可视化数据。

相似文献

1
Analysis of Mass Spectrometry Data for Nucleolar Proteomics Experiments.
Methods Mol Biol. 2016;1455:263-76. doi: 10.1007/978-1-4939-3792-9_21.
2
Quantitative Proteomic Analysis of the Human Nucleolus.
Methods Mol Biol. 2016;1455:249-62. doi: 10.1007/978-1-4939-3792-9_20.
3
Proteomics methods for subcellular proteome analysis.
FEBS J. 2013 Nov;280(22):5626-34. doi: 10.1111/febs.12502. Epub 2013 Sep 20.
4
Mass Spectrometry-Based Protein Quantification.
Adv Exp Med Biol. 2016;919:255-279. doi: 10.1007/978-3-319-41448-5_15.
6
The MaxQuant computational platform for mass spectrometry-based shotgun proteomics.
Nat Protoc. 2016 Dec;11(12):2301-2319. doi: 10.1038/nprot.2016.136. Epub 2016 Oct 27.
8
Platforms and Pipelines for Proteomics Data Analysis and Management.
Adv Exp Med Biol. 2016;919:203-215. doi: 10.1007/978-3-319-41448-5_9.
9
Methods and algorithms for quantitative proteomics by mass spectrometry.
Methods Mol Biol. 2013;1007:183-217. doi: 10.1007/978-1-62703-392-3_8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验