Suppr超能文献

结合筛选测试和分层错误发现率控制来识别显著的基因-环境相互作用。

Identifying significant gene-environment interactions using a combination of screening testing and hierarchical false discovery rate control.

作者信息

Frost H Robert, Shen Li, Saykin Andrew J, Williams Scott M, Moore Jason H

机构信息

Departments of Biomedical Data Science and Genetics, Institute for Quantitative Biomedical Sciences, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.

Center for Neuroimaging and Indiana Alzheimer's Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

出版信息

Genet Epidemiol. 2016 Nov;40(7):544-557. doi: 10.1002/gepi.21997. Epub 2016 Aug 31.

Abstract

Although gene-environment (G× E) interactions play an important role in many biological systems, detecting these interactions within genome-wide data can be challenging due to the loss in statistical power incurred by multiple hypothesis correction. To address the challenge of poor power and the limitations of existing multistage methods, we recently developed a screening-testing approach for G× E interaction detection that combines elastic net penalized regression with joint estimation to support a single omnibus test for the presence of G× E interactions. In our original work on this technique, however, we did not assess type I error control or power and evaluated the method using just a single, small bladder cancer data set. In this paper, we extend the original method in two important directions and provide a more rigorous performance evaluation. First, we introduce a hierarchical false discovery rate approach to formally assess the significance of individual G× E interactions. Second, to support the analysis of truly genome-wide data sets, we incorporate a score statistic-based prescreening step to reduce the number of single nucleotide polymorphisms prior to fitting the first stage penalized regression model. To assess the statistical properties of our method, we compare the type I error rate and statistical power of our approach with competing techniques using both simple simulation designs as well as designs based on real disease architectures. Finally, we demonstrate the ability of our approach to identify biologically plausible SNP-education interactions relative to Alzheimer's disease status using genome-wide association study data from the Alzheimer's Disease Neuroimaging Initiative (ADNI).

摘要

尽管基因-环境(G×E)相互作用在许多生物系统中起着重要作用,但在全基因组数据中检测这些相互作用可能具有挑战性,因为多重假设校正会导致统计功效的损失。为了应对功效低下的挑战以及现有多阶段方法的局限性,我们最近开发了一种用于G×E相互作用检测的筛选-测试方法,该方法将弹性网惩罚回归与联合估计相结合,以支持对G×E相互作用是否存在进行单一的综合检验。然而,在我们关于这项技术的原始工作中,我们没有评估第一类错误控制或功效,并且仅使用一个小的膀胱癌数据集对该方法进行了评估。在本文中,我们从两个重要方向扩展了原始方法,并提供了更严格的性能评估。首先,我们引入了一种分层错误发现率方法来正式评估个体G×E相互作用的显著性。其次,为了支持对真正的全基因组数据集进行分析,我们纳入了一个基于得分统计的预筛选步骤,以在拟合第一阶段惩罚回归模型之前减少单核苷酸多态性的数量。为了评估我们方法的统计特性,我们使用简单的模拟设计以及基于实际疾病结构的设计,将我们方法的第一类错误率和统计功效与竞争技术进行比较。最后,我们使用来自阿尔茨海默病神经影像倡议(ADNI)的全基因组关联研究数据,展示了我们的方法相对于阿尔茨海默病状态识别生物学上合理的单核苷酸多态性-环境相互作用的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a4b/5108431/f859cfe3d876/GEPI-40-544-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验