George T P, Morash S C, Cook H W, Byers D M, Palmer F B, Spence M W
Department of Biochemistry, Dalhousie University, Halifax, Canada.
Biochim Biophys Acta. 1989 Aug 22;1004(3):283-91. doi: 10.1016/0005-2760(89)90075-1.
The major pathway of choline (Cho) incorporation into phosphatidylcholine (PtdCho) in mammalian cells is sequential conversion of Cho to phosphocholine (PCho), cytidinediphosphate choline (CDP-Cho) and PtdCho. In intact cells, this sequence is usually demonstrated using radiolabeled Cho since PCho and CDP-Cho do not enter the cell intact. We have studied the incorporation of radiolabeled Cho, PCho and CDP-Cho into rat glioma (C6) cells following electropermeabilization. C6 cells were permeable as judged by [U-14C]sucrose and Erythrosin B uptake and more rapid incorporation of [1,2,3-3H]glycerol into cell lipids, and viable as assessed by uptake and incorporation of [methyl-3H]Cho, [1-14C]oleate and [1,2,3-3H]glycerol into complex lipids. Despite rapid incorporation of [methyl-3H]Cho into PtdCho in permeabilized cells, there was no incorporation of [methyl-14C]PCho or CDP-[methyl-14C]Cho into PtdCho. PCho (300 microM) and CDP-Cho (300 microM) failed to significantly reduce incorporation of 28 microM [methyl-3H]Cho into PtdCho. Radioactivity in PtdCho of cells prelabeled with [methyl-3H]Cho prior to permeabilization could be chased with 4 mM Cho but not with 4 mM PCho or 4 mM CDP-Cho. The water-soluble products of Cho metabolism--PCho, CDP-Cho and glycerophosphocholine--were retained at 37 degrees C in permeabilized cells compared with controls while there was uniform leakage from permeabilized cells at 4 degrees C. Hemicholinium-3, an inhibitor of high-affinity Cho transport, decreased [methyl-3H]Cho incorporation into PtdCho in permeabilized cells, as in controls, suggesting that even in permeabilized cells, Cho incorporation into PtdCho is linked to the transport system. We propose that individual steps of the cytidine pathway of PtdCho biosynthesis are functionally linked and that reaction intermediates are not freely diffusible within the cell but are channeled to PtdCho biosynthesis.
在哺乳动物细胞中,胆碱(Cho)掺入磷脂酰胆碱(PtdCho)的主要途径是Cho依次转化为磷酸胆碱(PCho)、胞苷二磷酸胆碱(CDP-Cho)和PtdCho。在完整细胞中,由于PCho和CDP-Cho不能完整进入细胞,该序列通常使用放射性标记的Cho来证明。我们研究了电穿孔后放射性标记的Cho、PCho和CDP-Cho掺入大鼠胶质瘤(C6)细胞的情况。通过[U-14C]蔗糖和赤藓红B摄取判断,C6细胞具有通透性,并且[1,2,3-3H]甘油更快地掺入细胞脂质中;通过[甲基-3H]Cho、[1-14C]油酸酯和[1,2,3-3H]甘油摄取并掺入复合脂质来评估细胞的活力。尽管在通透细胞中[甲基-3H]Cho迅速掺入PtdCho,但[甲基-14C]PCho或CDP-[甲基-14C]Cho没有掺入PtdCho。300微摩尔的PCho和300微摩尔的CDP-Cho未能显著降低28微摩尔[甲基-3H]Cho掺入PtdCho的量。在通透前用[甲基-3H]Cho预标记的细胞的PtdCho中的放射性可以用4毫摩尔的Cho追踪,但不能用4毫摩尔的PCho或4毫摩尔的CDP-Cho追踪。与对照相比,通透细胞在37℃下保留了Cho代谢的水溶性产物——PCho、CDP-Cho和甘油磷酸胆碱,而在4℃下通透细胞有均匀的渗漏。高亲和力Cho转运抑制剂半胱氨酸-3降低了通透细胞中[甲基-3H]Cho掺入PtdCho的量,与对照情况一样,这表明即使在通透细胞中,Cho掺入PtdCho也与转运系统相关。我们提出,PtdCho生物合成的胞苷途径的各个步骤在功能上是相关的,并且反应中间体在细胞内不是自由扩散的,而是被引导至PtdCho生物合成。