Suppr超能文献

生物基纳米材料的肽结合

Peptide Binding for Bio-Based Nanomaterials.

作者信息

Bedford N M, Munro C J, Knecht M R

机构信息

National Institute of Standards and Technology, Boulder, CO, United States.

University of Miami, Coral Gables, FL, United States.

出版信息

Methods Enzymol. 2016;580:581-98. doi: 10.1016/bs.mie.2016.05.010. Epub 2016 Jul 9.

Abstract

Peptide-based strategies represent transformative approaches to fabricate functional inorganic materials under sustainable conditions by modeling the methods exploited in biology. In general, peptides with inorganic affinity and specificity have been isolated from organisms and through biocombinatorial selection techniques (ie, phage and cell surface display). These peptides recognize and bind the inorganic surface through a series of noncovalent interactions, driven by both enthalpic and entropic contributions, wherein the biomolecules wrap the metallic nanoparticle structure. Through these interactions, modification of the inorganic surface can be accessed to drive the incorporation of significantly disordered surface metal atoms, which have been found to be highly catalytically active for a variety of chemical transformations. We have employed synthetic, site-directed mutagenesis studies to reveal localized binding effects of the peptide at the metallic nanoparticle structure to begin to identify the biological basis of control over biomimetic nanoparticle catalytic activity. The protocols described herein were used to fabricate and characterize peptide-capped nanoparticles in atomic resolution to identify peptide sequence effects on the surface structure of the materials, which can then be directly correlated to the catalytic activity to identify structure/function relationships.

摘要

基于肽的策略代表了一种变革性方法,通过模拟生物学中使用的方法,在可持续条件下制造功能性无机材料。一般来说,具有无机亲和力和特异性的肽已从生物体中分离出来,并通过生物组合筛选技术(即噬菌体和细胞表面展示)获得。这些肽通过一系列非共价相互作用识别并结合无机表面,这些相互作用由焓和熵的贡献驱动,其中生物分子包裹着金属纳米颗粒结构。通过这些相互作用,可以对无机表面进行修饰,以驱动掺入明显无序的表面金属原子,这些原子已被发现对各种化学转化具有高度催化活性。我们采用了合成的定点诱变研究,以揭示肽在金属纳米颗粒结构上的局部结合效应,从而开始确定对仿生纳米颗粒催化活性进行控制的生物学基础。本文所述的方案用于以原子分辨率制造和表征肽封端的纳米颗粒,以确定肽序列对材料表面结构的影响,然后可以将其直接与催化活性相关联,以确定结构/功能关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验